首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chiral cationic low-molecular-weight amphiphile, derived from L-alanine, was synthesized. Templated by the self-assemblies of the amphiphile, sol-gel reactions were carried out to control the morphologies and pore architectures of mesoporous silicas. The results reveal that the morphologies and pore architectures of mesoporous silicas are sensitive to the reaction conditions, such as temperature and the concentration of NaOH. When the reaction was carried out at 25 degrees C, righthanded coiled mesoporous silica nanoribbons with short pore channels were formed, most of which coiled tightly to form nanorods. However, at 80 degrees C, mesoporous silica nanoflakes with vertical pore channels were obtained.  相似文献   

2.
A new synthetic method for the fabrication of SiC/BN nanocomposites was devised to attain strong machinable ceramics. SiC/BN nanocomposites that contained 10, 20, and 30?vol% hexagonal BN (h-BN) were successfully fabricated by sintering SiC-BN nanocomposite powders by carbothermal reduction and nitridation of borosilicate glass powders. Homogeneous mixtures of silica (SiO(2)), boric acid (H(3)BO(3)), and carbon powder were heated in a nitrogen atmosphere to synthesize SiC-BN nanocomposite powders. Borosilicate glass was obtained by reacting SiO(2) and B(2)O(3) above 800?°C, and SiC and turbostratic BN (t-BN) were obtained by reacting borosilicate glass with carbon powder and nitrogen gas at 1500?°C. Carbothermal reduction followed by nitridation yielded SiC-BN nanocomposite powder composed of nanosized SiC and t-BN. By hot-pressing nanocomposite SiC-BN powders containing 7?wt% Al(2)O(3) and 2?wt% Y(2)O(3), machinable SiC/BN nanocomposites were obtained without a significant decrease in their fracture strength.  相似文献   

3.
Efficient inverted solar cells using TiO(2) nanotube arrays   总被引:2,自引:0,他引:2  
Yu BY  Tsai A  Tsai SP  Wong KT  Yang Y  Chu CW  Shyue JJ 《Nanotechnology》2008,19(25):255202
Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5?wt% NH(4)F and 1.0?wt% H(2)O with 20?V potential. The tube length (~100?nm) was controlled by the thickness of the sputtered titanium layer on the indium-tin oxide (ITO) substrate. The diameter of the tube was approximately 15-25?nm. After annealing in air at 500?°C for 1?h, nanotubes arrays were crystallized to the anatase phase from the initial amorphous state. Following the infiltration of polymeric semiconductor (poly(3-hexylthiophene) and (6,6)-phenyl C(60) butyric acid methyl ester, P3HT:PCBM), the filled TiO(2) layer had an optical absorption over a range from UV to visible light. The high surface-to-volume ratio of the nanotube arrays structure increased the effective area of the active region. The high efficiency of our solar cell is attributed to the vertical TiO(2) nanotube array's enhanced conduction of photo-induced current due to its charge transport capability.  相似文献   

4.
Nanocomposite Sm(2)Co(17)-5?wt% FeCo magnets were synthesized by high energy ball milling followed by consolidation into bulk shape by the spark plasma sintering technique. The evolution of magnetic properties was systematically investigated in milled powders as well as in spark plasma sintered samples. A high energy product of 10.2?MGOe and the other magnetic properties of M(s) = 107?emu?g(-1), M(r) = 59?emu?g(-1), M(r)/M(s) = 0.55 and H(c) = 6.4?kOe were achieved in a 5?h milled and spark plasma sintered Sm(2)Co(17)-5?wt% FeCo nanocomposite magnet. The spark plasma sintering was carried out at 700?°C for 5?min with a pressure of 70?MPa. The nanocomposite showed a higher Curie temperature of 955?°C for the Sm(2)Co(17) phase in comparison to its bulk Curie temperature for the Sm(2)Co(17) phase (920?°C). This higher Curie temperature can improve the performance of the magnet at higher temperatures.  相似文献   

5.
Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900?°C was also activated in a carbon dioxide atmosphere at 900?°C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77?K. SAXS studies showed that micropores with a radius of gyration of <0.35 ± 0.07 to 0.55 ± 0.05?nm were present, and TEM measurements and nitrogen adsorption showed that larger mesopores were also present. Hydrogen storage properties of the CA were also investigated. An activated sample with a Brunauer-Emmett-Teller surface area of 1539 ± 20?m(2)?g(-1) displayed a reasonably high hydrogen uptake at 77?K with a maximum hydrogen sorption of 3.6?wt% at 2.5?MPa. These results suggest that CA are promising candidate hydrogen storage materials.  相似文献   

6.
Electrically conductive optically clear adhesives (ECOCAs) were prepared using a nanostructured carbon material (CMK-3(150)) as a conductive filler. The mesoporous carbon material, CMK-3(150), was synthesized using an ordered mesoporous silica template to produce inverse replica ordered mesoporous carbon material with an approximately 10 nm pore diameter. An adhesive solution of acrylic monomers containing polar acrylate, CMK-3(150), and thermal initiator was reacted at 80 degrees C to prepare the ECOCA composite which had appropriate viscosity for further processing. The adhesive composite was adhered to various surfaces including ITO films upon thermal processing at 60 degrees C to afford a highly transparent and adhesive film. Tensile strength of the ECOCA films was increased with the contents of conductive filler up to 4 wt%. The percolation concentration of the CMK-3(150) in the composite was approximately 7 wt%, which is much less than those of typical conductive fillers. The optimum content of CMK-3(150) to assure optical clarity, tensile strength, and high conductivity was 2-3 wt%.  相似文献   

7.
CdTe nanowires with controlled composition were cathodically electrodeposited using track-etched polycarbonate membrane as scaffolds and their material and electrical properties were systematically investigated. As-deposited CdTe nanowires show nanocrystalline cubic phase structures with grain sizes of up to 60 nm. The dark-field images of nanowires reveal that the crystallinity of nanowires was greatly improved from nanocrystalline to a few single crystals within nanowires upon annealing at 200?°C for 6?h in a reducing environment (5%?H(2)+95%?N(2)). For electrical characterization, a single CdTe nanowire was assembled across microfabricated gold electrodes using the drop-casting method. In addition to an increase in grain size, the electrical resistivity of an annealed single nanowire (a few 10(5)?Ω?cm) was one order of magnitude greater than in an as-deposited nanowire, indicating that crystallinity of nanowires improved and defects within nanowires were reduced during annealing. By controlling the dopants levels (e.g.?Te content of nanowires), the resistivity of nanowires was varied from 10(4) to 10(0)?Ω?cm. Current-voltage (I-V) characteristics of nanowires indicated the presence of Schottky barriers at both ends of the Au/CdTe interface. Temperature-dependent I-V measurements show that the electron transport mode was determined by a thermally activated component at T>-50?°C and a temperature-independent component below -50?°C. Under optical illumination, the single CdTe nanowire exhibited enhanced conductance.  相似文献   

8.
Song X  Guo Z  Zheng J  Li X  Pu Y 《Nanotechnology》2008,19(11):115609
Hexagonal AlN nanorod and nanoneedle arrays were synthesized through the direct reaction of AlCl(3) and NH(3) by chemical vapor deposition at about 750?°C. Both the AlN nanoneedle and nanorod samples were of wurtzite structure and grew preferentially along the c-axis. With an increase in the ratio of NH(3) to Ar, an evolution from nanorods to nanoneedles was observed. A growth model was proposed to explain the possible growth mechanism. Measurements in field emission show that AlN nanoneedle arrays have a much lower turn-on field (3.1?V?μm(-1)) compared to nanorod arrays (15.3?V?μm(-1)), due to their large curvature geometry. The AlN nanoneedle arrays have potential applications in many fields, such as electron-emitting nanodevices and field-emission-based flat-panel displays.  相似文献   

9.
Zhao Z  Geng F  Cong H  Bai J  Cheng HM 《Nanotechnology》2006,17(18):4731-4735
ZnS nanostructures with different morphologies of submicrospheres, nanosheets and nanorods were synthesized by solution precipitation of thiourea with Zn(NO(3))(2) in the presence of block copolymer at low temperature. The sizes and morphologies of ZnS can be controlled simply by?changing the processing parameters. The results show that the ZnS submicrospheres are of 250-500?nm in diameter, nanosheets are 2.5?μm × 5.5?μm with an estimated thickness of 20-30?nm, and nanorods are 2-5?nm in diameter and 10-30?nm in length. Keeping the precursor system in an autoclave at 105?°C results in the formation of ZnS submicrospheres; ultrasonication and keeping the system at room temperature leads to the formation of ZnS nanosheets; and long-time continuous ultrasonication and keeping the system in an autoclave at 105?°C induces the formation of uniform ZnS nanorods. We argue that the reaction temperature and P123 may play crucial roles in the formation of three ZnS structures in this work. The morphologically controllable synthesis strategies may be extended to the shape-controlled production of nanostructures of other inorganic materials.  相似文献   

10.
Lead zirconate titanate (Pb(1.1)(Zr(0.52)Ti(0.48))O(3)) thin films of thickness 260?nm on Pt/Ti/SiO(2)/Si substrates were densified by 2.45?GHz microwave annealing. The PZT thin films were annealed at various annealing temperatures from 400 to 700?°C for 30?min. X-ray diffraction showed that the pyrochlore phase was transformed to the perovskite phase at 450?°C and the film was fully crystallized. The secondary (again pyrochlore) phase was observed in the PZT thin films, which were annealed above 550?°C. The surface morphologies were changed above 550?°C of the PZT thin films due to the secondary phase. Higher dielectric constant (ε(r)) and lower dielectric loss coercive field (E(c)) were achieved for the 450?°C film than for the other annealed films.  相似文献   

11.
Highly dispersed tungsten oxide on MCM-41 was synthesized using a novel atomic layer deposition (ALD) method. BET, XRD, XPS, NH3-TPD, and pyridine-IR were used to study the physicochemical properties of the supported tungsten oxides. In this study, the maximum loading of tungsten oxide on MCM-41 that could be prepared using the modified ALD method was 27.0 wt%. It was confirmed that the textural properties of the mesoporous silica were maintained after tungsten oxide loading. The NH3-TPD and Py-IR results indicated that weak acid sites, mainly Lewis acid sites, were produced over the WO3/MCM-41 samples. Moreover, 2-butanol dehydration was performed to demonstrate the potential advantages of the WO3/MCM-41 catalysts. The WO3/MCM-41 catalyst with 27.0 wt% tungsten oxide loading showed the highest activity in the dehydration of 2-butanol, which was attributed to the highest overall number of acid sites among the WO3/MCM-41 catalysts. The highly dispersed tungsten oxide on MCM-41 prepared via ALD can be an effective catalyst for producing butenes through 2-butanol dehydration.  相似文献   

12.
The effect of substrate temperature, 390-480?°C, during molecular beam epitaxy growth of InAsN quantum dots has been studied. The quantum dot formation was studied in situ, and it is shown that the quantum dots are close to fully relaxed within 4 monolayers (ML) of InAsN deposition. Further, the indium concentration was estimated to be 84%, 67%, 55% and 31% for 4?ML thick quantum dots grown at 390, 420, 450 and 480?°C, respectively. Thus, Ga incorporation was demonstrated at all substrate temperatures. The dot diameter and height increased from 23 to 38?nm, and 2.5 to 8.9?nm, respectively, when the growth temperature was increased from 390 to 480?°C. The 5?K photoluminescence intensity and wavelength both increased with substrate temperature.  相似文献   

13.
Pd nanoparticles supported in functionalized mesoporous silica were prepared. Mesoporous silica support was modified with [3-(2-aminoethyl aminopropyl)] trimethoxysilane. Palladium ions were grafted onto the functionalized mesoporous silica and reduced with hydrazine hydrate to obtain the Pd nanoparticles supported on functionalized mesoporous silica. The Pd loading in the nanocomposite of Pd supported on the functionalized mesoporous silica is 4.30 wt%. CO chemisorption analysis on the nanocomposite shows a Pd dispersion as high as 35% and a Pd surface area of 156 m2/g. The surface area, pore size, and pore volume decrease slightly with the incorporation of the Pd nanoparticles into the functionalized mesoporous silica. Pd supported on the functionalized mesoporous silica with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Heck carbon-carbon coupling reaction. The catalyst can be reused for at least six recycles in air with only a minor loss of activity.  相似文献   

14.
ZnO@mesoporous silica nanocomposite was prepared by the impregnation method, and very efficient laser action was highlighted. As revealed by high-resolution transmission electron microscopy (HR-TEM), nanometric ZnO particles are confined inside the mesochannels of CMI-1 mesoporous silicas. Upon excitation at 3.6?eV of a femtosecond pulsed laser and at low pumping intensity, the ZnO@mesoporous silica showed a broad photoluminescence (PL) band corresponding to the excitonic recombination of ZnO. When the pumping intensity is increased up to a threshold (2.5?mJ?cm(-2)), the excitonic emission turns to stimulated emission through a mechanism which will be discussed. The same threshold value was obtained with another excitation source and nanocomposites with different ZnO loadings inside the CMI-1 mesoporous silica. These results allow a better understanding of the random laser effect in ZnO@mesoporous silica and, consequently, a model has been proposed to explain this phenomenon. Based on these new observations, many new applications can be considered since short-wavelength devices are required by industry to design new information storage supports.  相似文献   

15.
Ge:SiO(x)/SiO(2) multilayers are fabricated using a new reactive dc magnetron sputtering approach. The influence of the multilayer stoichiometry on the ternary Ge-Si-O phase separation and the subsequent size-controlled Ge nanocrystal formation is explored by means of x-ray absorption spectroscopy, x-ray diffraction, electron microscopy and Raman spectroscopy. The ternary system Ge-Si-O reveals complete Ge-O phase separation at 400?°C which does not differ significantly to the binary Ge-O system. Ge nanocrystals of < 5?nm size are generated after subsequent annealing below 700?°C. It is shown that Ge oxides contained in the as-deposited multilayers are reduced by a surrounding unsaturated silica matrix. A stoichiometric regime was found where almost no GeO(2) is present after annealing. Thus, the Ge nanocrystals become completely embedded in a stoichiometric silica matrix favouring the use for photovoltaic applications.  相似文献   

16.
Cai H  Yang R  Yang G  Huang H  Nie F 《Nanotechnology》2011,22(30):305602
Host-guest energetic nanocomposites have been synthesized by self-assembly of the high energy density compound HNIW in nanometer-scale channels of an ordered mesoporous material SBA-15. The complete impregnation of HNIW can be achieved in acetone solvent at ambient temperature, and the maximum amount was around 70 wt%. Structural characterizations were systematically provided by XRD, TEM, N(2) adsorption, TG, (13)C solid-state NMR and FT-IR. The tendency of multi-nitro organic molecules to self-assemble when the solvent evaporated has been described. Hydrogen bond interactions were considered as the main driving force, so the choices of matched host matrix and guest organic compounds were pivotal for implementing this process. The thermal properties of nanocomposites were measured by DSC analysis. Compared with pure HNIW and a physical mixture, the decomposition peak temperature of the confined crystals decreased about 11?°C, while the total amount of heat released slightly increased. This strategy can also be expanded to other similar host-guest systems.  相似文献   

17.
Nanoparticles of Eu(3+) doped Y(2)O(3) (core) and Eu(3+) doped Y(2)O(3) covered with Y(2)O(3) shell (core-shell) are prepared by urea hydrolysis for 3?h in ethylene glycol medium at a relatively low temperature of 140?°C, followed by heating at 500 and 900?°C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18?nm for 500 and 900?°C heated samples respectively. Based on the luminescence studies of 500 and 900?°C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu(3+) emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu(3+) concentration of 4-5?at.%. A luminescence study establishes that the Eu(3+) environment in amorphous Y (OH)(3) is different from that in crystalline Y(2)O(3). For a fixed concentration of Eu(3+) doping, there is a reduction in Eu(3+) emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu(3+) increases with increase of crystallinity.  相似文献   

18.
Well size-controlled copper fine particles (diameter: 100-300?nm) were used as the inner electrode material of multilayered ceramic capacitors (MLCCs). The particles were dispersed in terpineol to form a printing paste with 50?wt% copper particles. The MLCC precursor modules prepared by the layer-by-layer printing of copper and BaTiO(3) particles were cosintered. Detailed observation of the particles, paste, and MLCCs before and after sintering was carried out by electron microscopy. The sintering temperature of Cu-MLCC was as low as 960?°C. The permittivity of these MLCCs was successfully measured with the copper inner layers.  相似文献   

19.
Several different synthetic methods have been developed to fabricate tungsten oxide (WO(3)) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO(2) gas sensing measurements. The as-synthesized WO(3) nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO(3) crystal nanostructures were produced with an average diameter of 30?nm (range 10-100?nm) at an arc discharge current of 110?A and 300?Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g.?a high arc discharge current combined with a low oxygen partial pressure results in small WO(3) nanostructures with improved conductivity. Sensors produced from the WO(3) nanostructures show a strong response to NO(2) gas at 325?°C. The ability to tune the morphology of the WO(3) nanostructures makes this method ideal for the fabrication of gas sensing materials.  相似文献   

20.
Lu SG  Mak CL  Pang GK  Wong KH  Cheah KW 《Nanotechnology》2008,19(3):035702
Transparent PbZr(0.52)Ti(0.48)O(3) (PZT)-doped silica nanocomposites were fabricated via a modified sol-gel process. The nanocomposites were annealed at different temperatures between 740 and 800?°C in order to produce PZT crystallites with different particle sizes. X-ray diffraction analysis indicated that the embedded PZT nanoparticles were crystallized with a perovskite structure while the SiO(2) matrix was still in an amorphous state. Transmission electron microscopy confirmed that the PZT particles were of nanosize with perovskite structure and dispersed within the SiO(2) matrix. Photoluminescence spectra of the samples were measured between 10 and 290?K. The pure silica matrix showed an emission band at 3.20?eV and a weak emission band at 2.65?eV. They were noticeably suppressed in the PZT/SiO(2) nanocomposites. An additional emission band at ~2.30?eV, due to transition within the PZT crystallites, was identified. This emission band showed a large blue-shift with decreasing PZT crystallite size and a substantially enhanced intensity as compared with that of bulk PZT ceramics. Our studies demonstrate the typical quantum size effect of ferroelectric-doped nanocomposites and the large influence of the silica matrix on the PL intensity of the embedded PZT particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号