首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the interaction between a cracked hole and a line crack under uniform heat flux. Using the principle of superposition, the original problem is converted into three particular cracked hole problems: the first one is the problem of the hole with an edge crack under uniform heat flux, the second and third ones are the problems of the hole under distributed temperature and edge dislocations, respectively, along the line crack surface. Singular integral equations satisfying adiabatic and traction free conditions on the crack surface are obtained for the solution of the second and third problems. The solution of the first problem, as well as the fundamental solutions of the second and third, is obtained by the complex variable method along with the rational mapping function approach. Stress intensity factors (SIFs) at all three crack tips are calculated. Interestingly, the results show that the interaction between the cracked hole and the line crack under uniform heat flux can lead to the vanishing of the SIFs at the hole edge crack tip. The fact has never been seen for the case of a cracked hole and a line crack under remote uniform tension.  相似文献   

2.
The extended finite element method (XFEM) is applied to the simulation of thermally stressed, cracked solids. Both thermal and mechanical fields are enriched in the XFEM way in order to represent discontinuous temperature, heat flux, displacement, and traction across the crack surface, as well as singular heat flux and stress at the crack front. Consequently, the cracked thermomechanical problem may be solved on a mesh that is independent of the crack. Either adiabatic or isothermal condition is considered on the crack surface. In the second case, the temperature field is enriched such that it is continuous across the crack but with a discontinuous derivative and the temperature is enforced to the prescribed value by a penalty method. The stress intensity factors are extracted from the XFEM solution by an interaction integral in domain form with no crack face integration. The method is illustrated on several numerical examples (including a curvilinear crack, a propagating crack, and a three‐dimensional crack) and is compared with existing solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies a penny-shaped crack in a finite thickness piezoelectric material layer. The piezoelectric medium is subjected to a thermal flux on its top and bottom surfaces. Both thermally insulated crack and heated crack are considered. Numerical solution for the finite layer thickness is obtained through the solution of a pair of dual integral equations. The result reduces to the closed form solution when the thickness of the piezoelectric layer becomes infinite. Exact expressions for the stress and electric displacement at the crack border are given as a function of the stress intensity factor, which is determined by the applied thermal flux. This paper is useful for the reliability design of piezoelectric materials in thermal environments.  相似文献   

4.
The thermoelastic analysis of an opening crack embedded in an orthotropic material is made under applied uniform heat flux and mechanical loadings. To simulate the case of an opening crack filled with a medium, a thermal-medium crack model is proposed. The thermally permeable and impermeable cracks are the limiting ones of the proposed thermal-medium one. The crack-tip thermoelastic fields induced by a crack in an orthotropic material are determined in closed forms. The elastic T-stress can be also obtained explicitly. The effects of applied mechanical loadings and the thermal conductivity of crack interior on the heat flux at the crack surfaces and the mode-II stress intensity factor are investigated through numerical computations. The obtained results reveal that an increase of the thermal conductivity of crack interior decreases the mode-II stress intensity factor. And when an applied mechanical loading is increasing, the mode-II stress intensity factor is rising.  相似文献   

5.
This article presents a study on the plane thermoelasticity problem of an infinite orthotropic plate split by three coplanar cracks under the action of symmetrical heat flow. Using the technique of Fourier transforms, the related four-part mixed boundary value problems are reduced to two kinds of quadruple integral equations with cosine and sine kernels which are solved by use of finite Hilbert transformation. Closed form solutions to the temperature, thermal displacements and thermal stresses on the crack surfaces, and especially, the thermal stress intensity factors at crack tips are obtained for the case of uniform heat flow. The known solutions to the orthotropic thermoelasticity problem of uniform heat flow disturbed by a pair of coplanar cracks or a central planar crack can be deduced from the above results in a straightforward manner, including the solution of thermal stress intensity factors for the corresponding thermoelasticity problem with two collinear cracks which is another form of the solution, equivalent to that of series expressions obtained by the authors in a previous paper, but much simpler. It is found that extremely large magnitudes of stress singularity may occur as the distance between two adjacent cracks approaches zero.  相似文献   

6.
A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis–Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis–Menten kinetics.  相似文献   

7.
Helical coils and nanofluids are among efficient methods for heat transfer augmentation. The present study numerically investigates convective heat transfer with nanofluids in helically coiled tubes. Two boundary conditions are applied to the coil walls; constant temperature and constant heat flux. Heat transfer in nanofluids are mainly investigated using either the homogeneous model or the two-phase model. However, in the present numerical solution, the four-equation model is applied, using slip mechanisms for the base fluid and nanoparticles. Considering that the proposed model is simplified compared to the two-phase model, it can be regarded as an efficient model for numerical solution of heat transfer in nanofluids. Governing equations are solved in the non-dimensional form using the projection algorithm of finite difference method. Water/CuO with a 0.2% volume fraction and water/Ag with a 0.03% volume fraction are examined for validation of numerical results in case of constant temperature and constant heat flux boundary conditions, respectively. The obtained results show a better agreement of this model with respect to experimental data, compared to the homogeneous model.  相似文献   

8.
A problem of a circular elastic inclusion interacting with a crack under the thermal loading (heat flux at infinity) is revisited, and the system of singular integral equations with logarithmic kernels is obtained. This result corrects some errors found in the previous work by Chao and Lee (1996). Present solution is verified by the finite element method.  相似文献   

9.
Asymptotics of solutions to the Laplace equation with Neumann or Dirichlet conditions in the vicinity of a circular singular edge in a three-dimensional domain are derived and provided in an explicit form. These asymptotic solutions are represented by a family of eigen-functions with their shadows, and the associated edge flux intensity functions (EFIFs), which are functions along the circular edge. We provide explicit formulas for a penny-shaped crack for an axisymmetric case as well as a case in which the loading is non-axisymmetric. Explicit formulas for other singular circular edges such as a circumferential crack, an external crack and a 3π/2 reentrant corner are also derived. The mathematical machinery developed in the framework of the Laplace operator is extended to derive the asymptotic solution (three-component displacement vector) for the elasticity system in the vicinity of a circular edge in a three-dimensional domain. As a particular case we present explicitly the series expansion for a traction free or clamped penny-shaped crack in an axisymmetric or a non-axisymmetric situation. The precise representation of the asymptotic series is required for constructing benchmark problems with analytical solutions against which numerical methods can be assessed, and to develop new extraction techniques for the edge flux/intensity functions which are of practical engineering importance in predicting crack propagation.  相似文献   

10.
The problem of thermal conductivity of a material containing microcracks of arbitrary shape (including non-flat ones) is considered. The resistivity contribution tensor of a crack – the quantity that determines the decrease in the overall conductive properties of a solid due to introduction of such cracks – is derived on the basis of the solution for the strength of a singularity of the heat flux near a crack tip (heat flux intensity factor). The approach is illustrated with several examples. It is also shown how the resistivity contribution tensor can be used to calculate effective conductive properties in the framework of various self-consistent schemes – effective media, effective field and differential scheme.  相似文献   

11.
The mechanical and electric fields in a finite thermopiezoelectric plate containing an isolated crack are formulated by applications of the Stroh’s formulism and conformal transformation. The general form of the solution is constructed consisting of a holomorphic part in terms of Laurent series of each mapping planes, and a nonholomorphic part in integral form due to the crack. The approximate solution is obtained by least square method for a rectangular plate in which supplementary functions are introduced concerning its four corners for the purpose of accelerating the convergency of the Laurent series. The coefficients of the Laurent series of the solution, both for thermal field and electro-mechanical field, are exhibited for a crack problem, and the accuracy of the approximation is explored subsequently. The stress and electric displacement (SED) intensity factors are given for varying the plate size and the crack site. For specified crack length, considerable enhancement of SED intensity factors may be attained as the plate size increases owing to the mechanical and electric fields formed under uniform heat flow.  相似文献   

12.
Motivated by material science applications, the paper focuses on quantitative characterization and comparison of two microstructural elements typical for lamellar materials - crack and contacting area - in the context of their effect on macroscopic elastic and conductive (thermal or electrical) properties of a body of finite size. The problem is solved in axisymmetric formulation - axial load or axial heat flux is applied to a circular cylinder containing a centered crack, either internal or external. The latter case corresponds to the welding of two halves of the cylinder at the center. The changes in the elastic and conductive properties of the cylinder due to these types of cracks are obtained in explicit analytical form. It is shown that the contributions of internal and external cracks into elastic and conductive properties are similar if the relative loss in the cross-sectional between two parts of the cylinder is up to 70% for elasticity problem and up to 85% for conductivity problem. We also show that the changes in elastic compliance and conductive properties generated by both microstructural elements are interrelated by cross-property connection identical to one obtained for an unbounded material.  相似文献   

13.
The axisymmetry problem of a penny-shaped crack opened out by thermal loads is studied. The linear theory of micropolar elasticity is employed. Two types of thermal loads are considered—prescribed temperature on the crack faces and prescribed heat flux across the faces. It is shown that, in both the cases, the problem is equivalent to the isothermal problem of the crack opened out by suitable normal tractions on the crack faces. The stress intensity factors are found to depend on, in addition to the usual parameters, two parameters N and M; N is a number characterising the coupling of the displacement field with the microtation field and M is the ratio N/τ where τ is a non-dimensional material characteristic length. The classical values of the stress intensity factors are recovered as a limiting case. Numerical results are presented for the case of constant heat flux across the crack faces. These results show that the presence of couple stresses elevates the values of the stress intensity factors.  相似文献   

14.
The orthotropic thermoelasticity problem of an antisymmetrical heat flow disturbed by three coplanar cracks is investigated in this article. Closed form solutions to the thermoelastic field components on the crack surfaces and the thermal stress intensity factors at crack tips are obtained for the case of a linear heat flow. The known solutions to the orthotropic thermoelasticity problem of a linear heat flow disturbed by a pair of coplanar cracks or a central planar crack can be deduced from the above results in a straightforward manner. It is found that extremely large magnitudes of stress singularity may occur as the distance between two adjacent cracks is approaching zero. This article and the author's previous paper [1] completely solve the plane thermoelasticity problem of an arbitrary heat flow disturbed by three coplanar cracks.  相似文献   

15.
A. N. Das 《Acta Mechanica》1994,107(1-4):13-19
Summary The dynamic in-plane problem of the non-symmetric extension of a crack in an infinite, isotropic elastic medium under normal stress is analyzed. Following Cherepanov [8], Cherepanov and Afanas'ev [9] the general solution of the problem is derived in terms of an analytic function of complex variable. The results include the expressions for the stress intensity factors at the crack tips and the rate of energy flux into the cxtending crack edges. For a particular case, numerical calculations for the stress intensity factor and the energy flux rate are carried out.  相似文献   

16.
Tiegang Fang  Ji Zhang 《Acta Mechanica》2010,209(3-4):325-343
In this paper, the heat transfer over a shrinking sheet with mass transfer is studied. The flow is induced by a sheet shrinking with a linear velocity distribution from the slot. The fluid flow solution given by previous researchers is an exact solution of the whole Navier–Stokes equations. By ignoring the viscous dissipation terms, exact analytical solutions of the boundary layer energy equation were obtained for two cases including a prescribed power-law wall temperature case and a prescribed power-law wall heat flux case. The solutions were expressed by Kummer’s function. Closed-form solutions were found and presented for some special parameters. The effects of the Prandtl number, the wall mass transfer parameter, the power index on the wall heat flux, the wall temperature, and the temperature distribution in the fluids were investigated. The heat transfer problem for the algebraically decaying flow over a shrinking sheet was also studied and compared with the exponentially decaying flow profiles. It was found that the heat transfer over a shrinking sheet was significantly different from that of a stretching surface. Interesting and complicated heat transfer characteristics were observed for a positive power index value for both power-law wall temperature and power-law wall heat flux cases. Some solutions involving negative temperature values were observed and these solutions may not physically exist in a real word.  相似文献   

17.
Plastic dissipation at the crack tip under cyclic loading is responsible for the creation of an heterogeneous temperature field around the crack tip. A thermomechanical model is proposed in this paper for the theoretical problem of an infinite plate with a semi-infinite through crack under mode I cyclic loading both in plane stress or in plane strain condition. It is assumed that the heat source is located in the reverse cyclic plastic zone. The proposed analytical solution of the thermo-mechanical problem shows that the crack tip is under compression due to thermal stresses coming from the heterogeneous stress field around the crack tip. The effect of this stress field on the stress intensity factor (its maximum and its range) is calculated analytically for the infinite plate and by finite element analysis. The heat flux within the reverse cyclic plastic zone is the key parameter to quantify the effect of dissipation at the crack tip on the stress intensity factor.  相似文献   

18.
薄板在周期热流作用下的热响应(Ⅰ):温度响应   总被引:1,自引:1,他引:0  
基于具有热流延迟相的双曲型热传导方程,研究了薄板在周期热流作用下的温度响应。首先采用分离变量法,求解了以热流矢量为基本未知量的热传导方程,得到了板内热流场分布,然后再利用能量守恒方程,获得了板内温度响应的解析表达式。通过计算,分析了板内温度响应随不同热流矢量延迟相以及边界热流频率的变化趋势,并与经典的Fourier热传导方程所得到的结果进行了比较。结果表明,在高频热流加热下,双曲型热传导模型所给出的温度响应与经典的Fourier热传导模型具有显著的差别。  相似文献   

19.
This paper investigates the heat transfer problem of an infinite functionally graded medium containing an arbitrarily oriented crack under uniform remote heat flux. In the mathematical treatment the crack is approximated as a perfectly insulating cut. By using Fourier transformation, the mixed boundary value problem is reduced to a Cauchy-type singular integral equation for an unknown density function. The singular integral equation is then solved by representing the density function with a Chebyshev polynomial-based series and solving the resulting linear equation using a collocation technique. The temperature field in the vicinity of the crack and the crack-tip heat flux intensity factor are presented to quantify the effect of crack orientation and grading inhomogeneity on the heat flow around the crack.  相似文献   

20.
An analytical solution via the beam theory considering shear deformation effects is developed to solve the static and dynamic fracture problem in a bounded double cantilever beam (DCB) specimen. Fixed displacement condition is prescribed at the pin location under which crack arrest occurs. In the static case, at first, the compliance function of a DCB specimen is obtained and shows good agreement with the experimental results cited in the literature. Afterward, the stress intensity factor is determined at the crack tip via the energy release rate formula. In the dynamic case, the obtained governing equations for the model are solved supposing quasi‐static treatment for unstable crack propagation. Finally, a closed form expression for the crack propagation velocity versus beam parameters and crack growth resistance of the material is found. It is shown that the reacceleration of crack growth appears as the crack tip approaches the finite boundary. Also, the predicted maximum crack propagation velocity is significantly lower than that obtained via the Euler–Bernoulli theory found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号