首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superconducting power cable is one of the promising ways of underground transmission of huge electric power in the future. The authors have long proposed the idea of the extruded polymer insulation for superconducting cables. The prominent features of the design are to exploit the excellent electrical properties of polymer in the cryogenic temperatures and to separate the helium coolant from the electrical insulation. Although the extruded cross-linked polyethylene cable has proved ability at the liquid nitrogen temperature, the cable insulation cracked due to mechanical stress during cooling to the liquid helium temperature. To overcome this problem, ethylene propylene rubber (EPR) was selected as a new insulating material considering the good results of mechanical and electrical tests of EPR samples at cryogenic temperatures. An extruded EPR insulated superconducting cable 15 m in length was fabricated and a cooling test down to the liquid helium temperature and a voltage test at the liquid helium temperature were carried out with fair success. This is a breakthrough in terms of the electrical insulation design of cryogenic cables.  相似文献   

2.
This is a review to show the importance of electrical insulation in ac superconducting cables. An attractive superconducting cable has to be designed for the voltage range of 60-270 kV. Therefore, a reliable insulation design is imperative. Two types of insulation have been compared. One is composite insulation, namely laminar paper or plastic tape, impregnated with coolant. The other is solid insulation of extruded polymer on the conductor. The composite insulation has a lengthy history and, in the constructions to date, has been the insulation design used for superconducting cables. Some prototype superconducting cables with this type of insulation have been developed and successfully tested. However, the partial discharge in butt gaps may affect their long-term reliability. The solid insulation, on the other hand, can separate the coolant from the electrical insulation and can exploit the benefit of the super electrical insulation characteristics of polymers in the cryogenic region. Some attempts have been made to use this design with liquid nitrogen and liquid helium. One example incorporating extruded ethylenepropylene rubber (EPR) for insulation was found to satisfactorily go through the cool-down to a liquid helium temperature and to endure the simultaneous voltage and current tests. EPR, and possibly some other polymers, seem to be promising materials for solid insulation in the cryogenic region  相似文献   

3.
In recent years, biomaterials have attracted attention in various fields in response to environmental problems. We pay attention to bamboo because it naturally decomposes and is characterized by its excellent elasticity and water absorption properties. We had proposed a bamboo-ice composite system as a substitute for the glass fiber reinforced plastics (GFRP) in electrical insulation systems at cryogenic temperatures. In this paper we will report the AC breakdown properties of a bamboo pulp-ice composite system at liquid nitrogen temperature. The bamboo pulp-ice composite system had AC breakdown strength comparable with GFRP and can be easily molded in various shapes. We consider that the bamboo pulp-ice composite system is promising as a substitute for the GFRP in the electrical insulating systems at cryogenic temperatures  相似文献   

4.
The discovery of high temperature superconductors (HTS) has triggered renewed interest in the study of dielectric materials at cryogenic temperatures. While considerable work was done in the 1970s and 1980s on dielectrics immersed in liquid helium for low temperature superconducting applications, there remains a need for dielectric research at liquid nitrogen temperature for HTS applications, requiring experimental data oriented toward practical situations. We report on AC breakdown (puncture and/or flashover), and impulse breakdown of solid materials in either vacuum or in liquid nitrogen. Solid materials which we examined, include fiberglass reinforced plastics, epoxies with and without filler, and polymeric tape. Combinations of some of these materials have also been studied at low temperatures. Additionally we have measured permittivity and dissipation factor for materials for which these parameters are not available at 77 K. Finally, we also discuss specific applications for HTS cables including breakdown and aging studies on model cables, with lapped tape electrical insulation, immersed in liquid nitrogen.  相似文献   

5.
Cables as elements of power distribution system have great influence on its reliable service and overall planning requirements. During last years, crosslinked polyethylene (XLPE) cables have been more and more used in power systems. This paper presents the results of an investigation of changing of (XLPE) cables insulation breakdown stress (AC BDS) due to water absorption. The paper deals with AC BDS of the following kinds of XLPE cable insulations: steam and dry cured with water tree retardant crosslinked polyethylene (TR-XLPE) and non-tree retardant crosslinked polyethylene (XLPE). During tests, the tap water was injected into, (1) conductor with cable ends closed; (2) into cable conductor with ends opened; and (3) into metallic screen with cable ends opened. The presence of water in XLPE cables was subjected to electrical stress and heating. AC BDS tests were performed as a function of aging time and water content in the cable insulation at different aging temperatures. Also, in this investigation, tests with the changing of AC BDS in the radial direction of unaged and aged XLPE cable insulations were carried out.  相似文献   

6.
绝缘材料在低温下的电阻特性测试   总被引:1,自引:0,他引:1  
李娜  曹晓珑 《绝缘材料》2003,36(1):39-42
论文测量研究了几种常用的绝缘材料在室温到液氮温度范围内的电阻率,测量结果表明,绝缘材料在低温下电阻率随着温度的上升呈e指数变化趋势,但是材料在液氮和氮气中的电阻率变化不是简单地符合同一条温度变化曲线,由此推断液氮和氮气中绝缘材料的导电机理可能有所不同。  相似文献   

7.
The partial discharge (PD) inception characteristics are studied in liquid nitrogen (LN/sub 2/)/polypropylene laminated paper (PPLP/sup /spl reg//) composite insulation system for high temperature superconducting (HTS) cable. Experimental results revealed that the magnitude of the initial PD increased as the PD inception electric field strength was increased, because the injected energy increased. Initial PD was generated at the first and third quadrant of applied AC voltage phase. The probability of initial PD at the positive and negative voltage phase was almost the same. The reason is because liquid nitrogen is a nonpolar molecule and we used symmetric electrode configuration with uniform electric field distribution. Finally, it was pointed out that PD inception electric field strength (PDIE) depended on the volume of the butt gap because of the increasing probability of weak points of electrical insulation, and PDIE linearly decreased with increasing stressed volume of the butt gap in the log-log scale.  相似文献   

8.
In designing superconducting electrical power apparatus, the knowledge of cryogenic gas and liquid insulation characteristics is essential. The authors have studied the discharge characteristics of relatively long-gap configurations in air and nitrogen at a cryogenic temperature. A sphere-to-sphere electrode with a gap length of 20 to 150 mm is used for measurements in uniform electric field. The breakdown voltage characteristics basically obey Paschen's law at cryogenic temperature for 50 Hz, AC, DC and lightning impulse voltage applications. A rod-to-plane electrode with a gap length of 20 to 330 mm is used for measurements in nonuniform electric field. In air at cryogenic temperature and nitrogen gas at both room and cryogenic temperature, streamer-like corona discharge appears near the tip of the rod electrode before the breakdown, and the breakdown voltage increases linearly with gap length. In air at room temperature thin film-like corona discharge, however, appears near the tip of the rod electrode before breakdown, and the breakdown voltage becomes higher than the other case. In order to examine the variation of corona discharge characteristics, some additional experiments are conducted. As a result, it becomes clear that thin film-like glow corona discharge appears when electronegative gas is contained and sufficient electrons are supplied from the cathode.  相似文献   

9.
This paper illustrates a new model that enables the estimation of life of polymeric insulation subjected to DC stress, both in the presence and in the absence of voltage polarity inversions. The derivation of the model parameters is based on the results of space charge measurements and accelerated life tests realized at constant DC stress, which allows the characterization of the performance of insulating materials under DC electrical stress to be carried out in short times. The expected life of a cable in service can be evaluated by means of this model, provided that the rate of voltage inversions expected during its life is known or estimated. The model is applied here to results of tests carried out on polyethylene-based materials for cable insulation, and model parameters are calculated resorting to two different approaches. A satisfactory fitting of life test results is achieved, thus confirming the validity of the proposed model.  相似文献   

10.
概述了世界上高温超导电缆的研究历史和现状,介绍了高温超导电缆本体的基本结构及绝缘要求,分析了高温超导电缆主绝缘的结构及存在的问题。针对高温超导电缆中使用的液氮和几种低温固体绝缘材料,分别介绍了其在低温环境下介电性能的相关研究进展。总结发现:液氮的击穿场强受到气泡和电极材料的影响;液氮下绝缘材料的直流击穿场强高于交流击穿场强;聚酰亚胺在液氮下的交直流击穿场强高于聚丙烯层压纸;低温会抑制环氧树脂中电树枝的生长。  相似文献   

11.
为了解决固体合成绝缘材料低温下的脆裂问题,本文研究了超高分子量聚乙烯用作低温电缆绝缘层的可能性。通过试验比较了各种电缆绝缘材料在低温下的脆裂情况,并在液氮温区中测定了 UHMW-PE 的电气绝缘性能。试验结果是满意的。  相似文献   

12.
基于时频域反射法的高温超导电缆故障定位研究   总被引:1,自引:0,他引:1  
针对我国超导电缆公里级示范工程的运维需求,采用基于伪Wigner-Ville分布的时频域反射法,测量不同温度和不同类型模拟缺陷下超导电缆的时频信号变化,分析不同温度下时频分析在超导电缆故障定位中应用的有效性,并通过改变入射波的中心频率和带宽,研究入射波形形态对故障定位的影响。模型样缆采用国产35kV冷绝缘三相统包高温超导电缆,缺陷模拟相设置了绝缘缺失、对地绝缘电阻逐渐减小、短路3种类型的故障,检测温度设置为室温、液氮和回温3种环境。结果表明:室温环境下,基于伪Wigner-Ville分布的时频域反射法对上述3种故障反射的反应灵敏度依次增加,定位误差小于3%,入射波的中心频率或带宽越高,引起的衰减越大,定位需要的时间补偿就越多;液氮环境下,针对绝缘缺失和短路的叠加故障,当温度下降至77K附近时,故障处归一化时频互相关峰值随温度的小幅度下降而逐渐减小,且波速明显升高;温度回升过程中,该方法的定位准确度不受温度变化和电缆状态的影响,误差仍小于3%。回温过程中随着温度的变化,超导电缆故障处和末端归一化时频互相关峰值大小发生明显的同步变化,该现象可评估现场超导电缆系统中液氮泄漏导致的温度上升问题。  相似文献   

13.
A multitude of `arc tracking' tests on cables for space applications has been performed to improve the basic understanding of the phenomena responsible for the fault arc behavior. The damage in a cable bundle develops in a complex system consisting of metallic conductors, insulation materials and arc plasma. Considering the degradation effects, vacuum as one of the applied test parameters, has turned out to be an important test environment. The investigations are based on a new test method, developed to assess arc tracking properties of cables for space applications. Tests were conducted with different insulation materials at cables with different AWG at 125 V dc and nominal currents. The tests were focused on the vacuum environment, using air only for the purpose of comparison. For some cable types, vacuum has turned out to be a worst-case environmental condition with respect to fault arc effects, such as the conductor burn-off, degradation of the insulation of adjacent cables and the extension of the fault arc. This paper presents these worst case experiments in detail  相似文献   

14.
15.
为研究交联聚乙烯(cross-linked polyethylene,XLPE)绝缘材料的热分解活化能、电气特性和力学特性随热老化程度变化的规律,对交流电力电缆绝缘用XLPE材料在110 ℃下开展加速热老化实验。采用热失重(thermogravimtric analyzer, TGA)测试手段,对XLPE在20~600 ℃的热分解行为进行研究;采用交流击穿测试、宽频介电谱测试及体积电阻率测试,研究老化后XLPE试样的电气特性;采用拉伸实验测试,研究老化后XLPE试样的力学特性。结果表明:热老化使得XLPE的交联结构和结晶状态被破坏,XLPE活化能呈减小趋势。由于氧化反应快速进行,使得XLPE分子链发生断裂,交联结构变弱,导致XLPE绝缘材料严重劣化,其活化能、击穿强度、体积电阻率、弹性模量和断裂伸长率随老化时间增长呈下降趋势,而介电常数、介电损耗和电导率呈增加趋势。  相似文献   

16.
为研究交联聚乙烯(cross-linked polyethylene,XLPE)绝缘材料的热分解活化能、电气特性和力学特性随热老化程度变化的规律,对交流电力电缆绝缘用XLPE材料在110 ℃下开展加速热老化实验。采用热失重(thermogravimtric analyzer, TGA)测试手段,对XLPE在20~600 ℃的热分解行为进行研究;采用交流击穿测试、宽频介电谱测试及体积电阻率测试,研究老化后XLPE试样的电气特性;采用拉伸实验测试,研究老化后XLPE试样的力学特性。结果表明:热老化使得XLPE的交联结构和结晶状态被破坏,XLPE活化能呈减小趋势。由于氧化反应快速进行,使得XLPE分子链发生断裂,交联结构变弱,导致XLPE绝缘材料严重劣化,其活化能、击穿强度、体积电阻率、弹性模量和断裂伸长率随老化时间增长呈下降趋势,而介电常数、介电损耗和电导率呈增加趋势。  相似文献   

17.
电力电缆在运行过程中普遍存在的热老化现象容易加速绝缘失效,限制设备使用寿命,甚至引发电力系统故障。纳米粒子掺杂改性可以提高聚乙烯基体材料的热稳定性,开展相关研究可以为提高电缆绝缘寿命提供解决方案。以低密度聚乙烯(LDPE)/二氧化钛(Ti O_2)纳米复合材料为研究对象,分别研究了热老化条件下纳米粒子质量分数、老化时间、老化温度对材料介电特性的影响。实验结果表明,掺杂Ti O_2纳米粒子能够改善LDPE基体材料的介电特性,当Ti O_2纳米粒子填充质量分数为0.5%时,纳米复合材料介电特性最佳。老化时间和老化温度是影响材料介电特性劣化的两个重要因素,随着老化时间推移和老化温度提高,纳米复合材料的介电性能劣化现象越明显。对聚乙烯材料进行纳米改性的同时降低电缆运行环境温度,对提高电缆绝缘寿命具有重要意义。  相似文献   

18.
The aim of this article is to investigate the extent of space charge accumulation due to a temperature gradient in comparison with other charge-supply mechanisms, particularly injection from the electrodes. For this purpose, space-charge measurements were carried out on HVDC cable models under application of different temperature gradients across the cable insulation, above and close to the threshold field for space-charge accumulation. The main results, consisting of space-charge patterns and extracted quantities, are discussed here.  相似文献   

19.
The authors describe the successful development of a 138 kV transition joint between high-pressure dielectric-fluid-filled cable with paper insulation and cable with extruded insulation, such as cross-linked polyethylene or ethylene propylene rubber. Such a joint must have adequate electrical and mechanical properties and contain the high-pressure dielectric fluid normally at 1400 kPa. For evaluation of the transition joint, the IEEE standard 404-1986 for laminar-to-laminar cable joints and extruded-to-extruded cable joints was considered, along with many of the specified types of tests included, such as high-voltage AC and DC, hot impulse to BIL, cyclic aging, and corona. The test results are reported  相似文献   

20.
交联聚乙烯电缆热老化与电树枝化相关性研究   总被引:1,自引:0,他引:1  
热老化过程不但会影响交联聚乙烯(XLPE)电缆绝缘的物理化学性能,还对绝缘内电树的产生与生长有着一定的影响。研究了热老化后XLPE电缆绝缘中的电树行为.探讨XLPE电缆绝缘中电树枝过程与材料热老化的关系。采用带循环通风的热老化箱对XLPE电缆绝缘进行3个温度等级的热老化实验:采用针板结构电极进行电树枝实验,并利用数码显微镜观察电树枝的产生和发展情况;利用差示扫描量热法(DSC)、傅里叶红外光谱分析(FTIR)测试了不同温度热老化下XLPE电缆绝缘的物理化学性能;最后探讨了几种不同结构电树枝的生长机理.认为热老化并没有加速电树枝的生长.反而有一定的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号