首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Losartan is the first angiotensin II type 1 (AT1) receptor antagonist to become available for the treatment of hypertension. However, recent reports have revealed several cases of losartan-induced bronchoconstriction. We investigated to determine the mechanism of losartan-induced bronchoconstriction, considering in particular the involvement of endogenous nitric oxide (NO). In this study, we examined the effects of losartan on airway obstruction and endogenous NO production using anesthetized guinea pigs and cultured airway epithelial cells. Five minutes after administration of angiotensin II (Ang II), the bronchoconstriction induced by acetylcholine was not changed. In contrast, Ang II in the presence of losartan caused a significant increase in the acetylcholine responsiveness. Pretreatment with L-N omega-nitroarginine-methylester (L-NAME) potentiated acetylcholine-induced bronchoconstriction 5 min after administration of Ang II, and L-arginine reversed this action of L-NAME on the acetylcholine responsiveness. Moreover, Ang II administration increased NO concentration in expired air (12.5 +/- 1.5 ppb for saline, 40 +/- 5 ppb for Ang II, p < 0.01), and losartan significantly inhibited Ang II-stimulated NO release (20 +/- 3.5 ppb) from guinea pig airway. In cultured airway epithelial cells, Ang II also increased NO release (160 +/- 25 nM), and the effect of this Ang II-induced NO release was significantly inhibited by pretreatment with losartan (25 +/- 8 nM, p < 0.01). These findings suggest that losartan-induced bronchoconstriction may result from inhibition of endogenous NO release in the airway.  相似文献   

2.
Flowering-time genes modulate the response to LEAFY activity   总被引:1,自引:0,他引:1  
Angiotensin 1-7 (Ang 1-7) has been reported to induce relaxation which is partially blocked by a kinin receptor antagonist. We investigated the relationship between kinins and angiotensin peptides with use of preconstricted isolated pig coronary arteries. Ang 1-7 alone (up to 10(-5) M) had no relaxant effect. Bradykinin (BK) (10(-10)-10(-7) M) induced transient relaxation, returning to basal tone, although BK remained in the bath. In these BK-stimulated rings, Ang 1-7 but not BK (both 5 x 10(-6) M) again relaxed the rings by approximately 50%. This relaxation was blocked by a BK B2 antagonist, a kininase, and a nitric oxide synthase inhibitor. Ang 1-7 inhibited purified angiotensin-converting enzyme (ACE) by 30 +/- 3.5% (n = 4) at 10(-6) M. However, in BK-pretreated rings, the ACE inhibitor ramiprilat did not induce relaxation, nor did it affect the relaxant response to Ang 1-7, which suggests that the effect of Ang 1-7 was not caused by ACE inhibition. Ang 1-7-induced vasodilation was reduced by 69.9 +/- 6.2% by an AT2 receptor blocker, PD-123319, and 29.3 +/- 7.3% by an AT1 antagonist, losartan. Neither the nonselective AT1/AT2 receptor antagonist sarthran nor saralasin inhibited the response to Ang 1-7. Ang II did not elicit relaxation either alone or in the presence of losartan, which suggests that activation of AT2 receptors does not cause relaxation. Thus, in the presence of bradykinin, Ang 1-7 relaxes pig coronary arteries via a PD-123319-sensitive mechanism involving nitric oxide, kinins and the BK B2 receptor. The kallikrein-kinin and renin-angiotensin systems may be linked through the interaction of Ang 1-7 and BK.  相似文献   

3.
This study investigated the signal transduction mechanisms of angiotensin-(1-7) [Ang-(1-7)]- and Ang II-stimulated arachidonic acid (AA) release for prostaglandin (PG) production in rabbit aortic vascular smooth muscle cells. Ang II and Ang-(1-7) enhanced AA release in cells prelabeled with [3H]AA. However, 6-keto-PGF1 alpha synthesis produced by Ang II was much less than that caused by Ang-(1-7). In the presence of the lipoxygenase inhibitor baicalein, Ang II enhanced production of 6-keto-PGF1 alpha to a greater degree than Ang-(1-7). Angiotensin type (AT)1 receptor antagonist DUP-753 inhibited only Ang II-induced [3H]AA release, whereas the AT2 receptor antagonist PD-123319 inhibited both Ang II- and Ang-(1-7)-induced [3H]AA release. Ang-(1-7), receptor antagonist D-Ala7-Ang-(1-7) inhibited the effect of Ang-(1-7), but not of Ang II. In cells transiently transfected with cytosolic phospholipase A2 (cPLA2), mitogen-activated protein (MAP) kinase or Ca(++)-/cal-modulin-dependent protein (CAM) kinase II antisense oligonucleotides, Ang-(1-7)- and Ang II-induced [3H]AA release was attenuated. The CaM kinase II inhibitor KN-93 and the MAP kinase kinase inhibitor PD-98059 attenuated both Ang-(1-7)- and Ang II-induced cPLA2 activity and [3H]AA release. Ang-(1-7) and Ang II also increased CaM kinase II and MAP kinase activities. Although KN-93 attenuated MAP kinase activity, PD-98059 did not affect CaM kinase II activity. Both Ang II and Ang-(1-7) caused translocation of cytosolic PLA2 to the nuclear envelope. These data show that Ang-(1-7) and Ang II stimulate AA release and prostacyclin synthesis via activation of distinct types of AT receptors. Both peptides appear to stimulate CaM kinase II, which in turn, via MAP kinase activation, enhances cPLA2 activity and release of AA for PG synthesis.  相似文献   

4.
5.
Cell-surface expression of endothelial P-selectin increases adhesion and migration of leukocytes and thus may participate in the pathogenesis of reperfusion injury and atherosclerosis. Angiotensin II (Ang II) is also thought to be involved in such disease states. Nitric oxide (NO) downregulates P-selectin expression, and bradykinin (BK) is known to stimulate NO release from endothelial cells. The objective of this study was to determine the effects of 10-min stimulation of cultured human umbilical endothelial cells (HUVECs) with Ang II, BK, or both on P-selectin expression. Ang II (10(-9)-10(-5) M) stimulated P-selectin expression in a concentration-dependent manner, exhibiting a significant effect at 10(-7) M and reaching a plateau at 5 x 10(-5) M. Pretreatment of HUVECs with the AT1 antagonist losartan and the AT1/AT2 antagonist saralasin but not the AT2 antagonist PD123319 (all at 10(-5) M) markedly attenuated the effect of 10(-7) M Ang II. The effects of Ang II on P-selectin expression were not affected by the presence of the NO synthase inhibitor nitro-L-arginine (L-NA, 5 x 10(-4) M) but were abolished by pretreatment with superoxide dismutase (SOD). BK (10(-6) M) abolished the effects of 10(-7) M Ang II on P-selectin expression but did not affect P-selectin expression induced by desmopressin (0.01-10 microM). L-NA obliterated the blunting effect of BK on the Ang II-induced P-selectin membrane expression. BK alone slightly stimulated P-selectin expression, but in the presence of L-NA, BK markedly enhanced P-selectin expression. The effects of BK in the presence of NA were not altered by SOD, indicating that at difference with Ang II, it acts by a mechanism other than superoxide generation. Thus, Ang II acting on AT1 receptors stimulates superoxide generation, which, in turn, induces expression of P-selectin on the endothelial cell surface. BK inhibits the effects of Ang II, likely acting via NO. We conclude that the balance between Ang II, BK, and NO can regulate P-selectin expression on the endothelial cell membrane, an important component of the cascade leading to leukocyte adhesion to the vascular endothelium.  相似文献   

6.
BACKGROUND: We assessed the role of extracellular signal-regulated kinases (ERKs) in Ang II-stimulated contraction and associated signaling pathways in vascular smooth muscle cells (VSMCs) from human small arteries. METHODS AND RESULTS: VSMCs derived from resistance arteries (<300 microm in diameter) from subcutaneous gluteal biopsies of healthy subjects (n=8) were used to assess Ang II-stimulated [Ca2+]i, pHi, and contractile responses. [Ca2+]i and pHi were measured with fura 2-AM and BCECF-AM, respectively, and contraction was measured photomicroscopically in cells grown on Matrigel matrix. To determine whether tyrosine kinases and ERKs influence Ang II-stimulated responses, cells were pretreated with 10(-5) mol/L tyrphostin A-23 (tyrosine kinase inhibitor) and PD98059 (MEK inhibitor). Ang II-stimulated MEK activity was determined by tyrosine phosphorylation of ERKs. The angiotensin receptor subtypes (AT1 and AT2) were assessed with [Sar1,Ile8]Ang II (a nonselective subtype antagonist), losartan (a selective AT1 antagonist), and PD123319 (a selective AT2 antagonist). Ang II dose-dependently increased [Ca2+]i (pD2=8.4+/-0.36, Emax=541+/-55 nmol/L), pHi (pD2=9. 4+/-0.29, Emax=7.19+/-0.01), and contraction (pD2=9.2+/-0.21, Emax=36+/-2.2%). Ang II induced rapid tyrosine phosphorylation of ERKs, which was inhibited by PD98059. Tyrphostin A-23 and PD98059 attenuated (P<0.05) Ang II-stimulated second messengers, and PD98059 reduced Ang II-induced contraction by >50%. [Sar1,Ile8]Ang II and losartan, but not PD123319, blocked Ang II-stimulated responses. CONCLUSIONS: These data demonstrate that in VSMCs from human peripheral resistance arteries, functional Ang II receptors of the AT1 subtype are coupled to signaling cascades involving Ca2+ and pHi pathways that are partially dependent on tyrosine kinases and ERKs. ERKs, the signaling cascades characteristically associated with cell growth, may play an important role in Ang II-stimulated contraction of human VSMCs.  相似文献   

7.
We recently reported that administration of Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) production, activates the vascular and cardiac renin-angiotensin systems and causes vascular thickening and myocardial hypertrophy in rats with perivascular and myocardial fibrosis. It has been reported that aldosterone may contribute to the development of cardiac fibrosis, but it is not known whether inhibition of NO synthesis affects angiotensin II (Ang II) receptor gene expression and aldosterone secretion. The aim of this study was to investigate the effect of NO inhibition on the expression of Ang II receptors in the adrenal gland and on aldosterone secretion in rats. Wistar King A rats received normal water, L-NAME alone (1 mg/mL in the drinking water), or L-NAME and the alpha1-adrenergic receptor blocker bunazosin (0.1 mg/mL in the drinking water) for 1 week. After 1 week of treatment with L-NAME, systolic blood pressure, plasma aldosterone concentration (PAC), and mRNA level and number of Ang II type 1 receptor (AT1-R) were increased. Plasma renin activity, serum angiotensin-converting enzyme activity, and the number of AT2-R were unchanged. Although addition of bunazosin to L-NAME restored systolic blood pressure to the control level, PAC and AT1-R numbers remained significantly higher than those of control level. These results suggest that the increased AT1-R number and PAC induced by the inhibition of NO synthesis were independent of blood pressure and systemic renin-angiotensin system. Therefore, hypertension and myocardial fibrosis induced by NO blockade may be due in part to an elevation of PAC caused by increased AT1-R in the adrenal gland.  相似文献   

8.
In the present study, we have characterized distribution and pharmacological properties of angiotensin II (Ang II) receptors in human adrenals frozen immediately after removal. Autoradiographic studies indicate that Ang II receptors are present throughout the gland. Co-incubations with DUP 753, a specific antagonist of the AT1 receptor, and with PD 123319, a specific antagonist of the AT2 receptor, reveal that Ang II receptors are mainly of type 2. The AT1 receptors are detected after 16 weeks of gestation at the periphery of the gland. Competition studies and Scatchard analysis reveal a homogenous population of high affinity AT2 binding sites (Kd = 0.68 +/- 0.1 nM). Binding capacities decrease from 1080 +/- 304 fmol/mg protein at 14 weeks to 275 +/- 55 fmol/mg protein at 21 weeks. These results differ from those obtained in adult glands where autoradiographic studies reveal that the AT1 receptors are found mainly in the zona glomerulosa and AT2 receptors mainly in the medulla. These data suggest that the AT2 receptors could be involved in the morphological or functional differentiation of the human fetal adrenal gland.  相似文献   

9.
1. The potential influences of nitric oxide (NO) and prostaglandins on the renal effects of angiotensin II (Ang II) have been investigated in the captopril-treated anaesthetized rat by examining the effect of indomethacin or the NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the renal responses obtained during infusion of Ang II directly into the renal circulation. 2. Intrarenal artery (i.r.a.) infusion of Ang II (1-30 ng kg(-1) min(-1)) elicited a dose-dependent decrease in renal vascular conductance (RVC; -38+/-3% at 30 ng kg(-1) min(-1); P < 0.01) and increase in filtration fraction (FF; +49+/-8%; P < 0.05) in the absence of any change in carotid mean arterial blood pressure (MBP). Urine output (Uv), absolute (UNaV) and fractional sodium excretion (FENa), and glomerular filtration rate (GFR) were unchanged during infusion of Ang II 1-30 ng kg(-1) min(-1) (+6+/-17%, +11+/-17%, +22+/-23%, and -5+/-9%, respectively, at 30 ng kg(-1) min(-1)). At higher doses, Ang II (100 and 300 ng kg(-1) min(-1)) induced further decreases in RVC, but with associated increases in MBP, Uv and UNaV. 3. Pretreatment with indomethacin (10 mg kg(-1) i.v.) had no significant effect on basal renal function, or on the Ang II-induced reduction in RVC (-25+/-7% vs -38+/-3% at Ang II 30 ng kg(-1) min(-1)). In the presence of indomethacin, Ang II tended to cause a dose-dependent decrease in GFR (-38+/-10% at 30 ng kg(-1) min(-1)); however, this effect was not statistically significant (P=0.078) when evaluated over the dose range of 1-30 ng kg(-1) min(-1), and was not accompanied by any significant changes in Uv, UNaV or FENa (-21+/-12%, -18+/-16% and +36+/-38%, respectively). 4. Pretreatment with L-NAME (10 microg kg(-1) min(-1) i.v.) tended to reduce basal RVC (control -11.8+/-1.4, +L-NAME -7.9+/-1.8 ml min(-1) mmHg(-1) x 10(-2)), and significantly increased basal FF (control +15.9+/-0.8, +L-NAME +31.0+/-3.7%). In the presence of L-NAME, renal vasoconstrictor responses to Ang II were not significantly modified (-38+/-3% vs -35+/-13% at 30 ng kg(-1) min(-1)), but Ang II now induced dose-dependent decreases in GFR, Uv and UNaV (-51+/-11%, -41+/-14% and -31+/-17%, respectively, at an infusion rate of Ang II, 30 ng kg(-1) min(-1)). When evaluated over the range of 1-30 ng kg(-1) min(-1), the effect of Ang II on GFR and Uv were statistically significant (P < 0.05), but on UNaV did not quite achieve statistical significance (P=0.066). However, there was no associated change in FENa observed, suggesting a non-tubular site of interaction between Ang II and NO. 5. In contrast to its effects after pretreatment with L-NAME alone, Ang II (1-30 ng kg(-1) min(-1)) failed to reduce renal vascular conductance in rats pretreated with the combination of L-NAME and the selective angiotensin AT1 receptor antagonist, GR117289 (1 mg kg(-1) i.v.). This suggests that the renal vascular effects of Ang II are mediated through AT1 receptors. Over the same dose range, Ang II also failed to significantly reduce GFR or Uv. 6. In conclusion, the renal haemodynamic effects of Ang II in the rat kidney appear to be modulated by cyclooxygenase-derived prostaglandins and NO. The precise site(s) of such an interaction cannot be determined from the present data, but the data suggest complex interactions at the level of the glomerulus.  相似文献   

10.
Angiotensin II (Ang II) interaction with the neuronal AT1 receptor results in a chronic stimulation of neuromodulation that involves the expression of norepinephrine transporter (NET) and tyrosine hydroxylase (TH). In view of this unique property and the presence of putative nuclear localization signal (NLS) consensus sequence in the AT1 receptor, this study was conducted to investigate the hypothesis that Ang II would induce nuclear sequestration of this G protein-coupled receptor and that the sequestration may have implications on Ang II-induced expression of NET and TH genes. Incubation of neuronal cultures with Ang II caused a time- and dose-dependent increase in the levels of AT1 receptor immunoreactivity in the nucleus. A 6.7-fold increase was observed with 100 nM Ang II, in 15 min, that was blocked by losartan, an AT1 receptor-specific antagonist. Ang II-induced nuclear sequestration was specific for AT1 receptor, because Ang II failed to produce a similar effect on neuronal AT2 receptors. The presence of the putative NLS sequence in the cytoplasmic tail of the AT1 receptor seems to be the key in nuclear targeting because: 1) nuclear targeting was attenuated by a peptide of the AT1 receptor that contained the putative NLS sequence; and 2) Ang II failed to cause nuclear translocation of the AT2 receptor, which does not contain the putative NLS. Ang II also caused a time- and dose-dependent stimulation of P62 phosphorylation, a glycoprotein of the nuclear pore complex. A 6-fold stimulation of phosphorylation was observed with 100 nM Ang II, in 15 min, that was completely blocked by losartan and not by PD123,319, an AT2 receptor specific antagonist. Preloading of neurons with p62-pep (a peptide containing consenses of mitogen-activated protein kinase in p62) resulted in a loss of Ang II-induced p62 phosphorylation and stimulation of NET and TH messenger RNA levels. In conclusion, these data demonstrate that Ang II induces nuclear sequestration of AT1 receptor involving NLS in the AT1 receptor and p62 of the nuclear pore complex in brain neurons. A possible role of such a nuclear targeting of the AT1 receptor on chronic neuromodulatory actions of Ang II has been discussed.  相似文献   

11.
The expression pattern of angiotensin (Ang) II type 2 receptor (AT2-R) in the remodeling process of human left ventricles (LVs) remains poorly defined. We analyzed its expression at protein, mRNA, and cellular levels using autopsy, biopsy, or operation LV samples from patients with failing hearts caused by acute (AMI) or old (OMI) myocardial infarction and idiopathic dilated cardiomyopathy (DCM) and also examined functional biochemical responses of failing hearts to Ang II. In autopsy samples from the nonfailing heart group, the ratio of AT1-R and AT2-R was 59% and 41%, respectively. The expression of AT2-R was markedly increased in DCM hearts at protein (3.5-fold) and mRNA (3.1-fold) levels compared with AMI or OMI. AT1-R protein and mRNA levels in AMI hearts showed 1.5- and 2.1-fold increases, respectively, whereas in OMI and DCM hearts, AT1-R expression was significantly downregulated. AT1-R-mediated response in inositol phosphate production was significantly attenuated in LV homogenate from failing hearts compared with nonfailing hearts. AT2-R sites were highly localized in the interstitial region in either nonfailing or failing heart, whereas AT1-R was evenly distributed over myocardium at lower densities. Mitogen-activated protein kinase (MAPK) activation by Ang II was significantly decreased in fibroblast compartment from the failing hearts, and pretreatment with AT2-R antagonist caused an additional significant increase in Ang II-induced MAPK activity (36%). Cardiac hypertrophy suggested by atrial and brain natriuretic peptide levels was comparably increased in OMI and DCM, whereas accumulation of matrix proteins such as collagen type 1 and fibronectin was much more prominent in DCM than in OMI. These findings demonstrate that (1) AT2-R expression is upregulated in failing hearts, and fibroblasts present in the interstitial regions are the major cell type responsible for its expression, (2) AT2-R present in the fibroblasts exerts an inhibitory effect on Ang II-induced mitogen signals, and (3) AT1-R in atrial and LV tissues was downregulated during chronic heart failure, and AT1-R-mediated functional biochemical responsiveness was decreased in the failing hearts. Thus, the expression level of AT2-R is likely determined by the extent of interstitial fibrosis associated with heart failure, and the expression and function of AT1-R and AT2-R are differentially regulated in failing human hearts.  相似文献   

12.
Nitric oxide (NO) has been implicated as a modulator of the vascular effects of angiotensin II (ANG II) in the kidney. We used a NO-sensitive microelectrode to study the effect of ANG II on NO release, and to determine the effect of selective inhibition of the ANG II subtype I receptor (AT1) with losartan (LOS) and candesartan (CAN). NO release from isolated and perfused renal resistance arteries was measured with a porphyrin-electroplated, carbon fiber. The vessels were microdissected from isolated perfused rat kidneys and perfused at constant flow and pressure in vitro. The NO-electrode was placed inside the glass collection cannula to measure vessel effluent NO concentration. ANG II stimulated NO release in a dose-dependent fashion: 0.1 nM, 10 nM and 1000 nM ANG II increased NO-oxidation current by 85+/-18 pA (n = 11), 148+/-22 pA (n = 11), and 193+/-29 pA (n = 11), respectively. These currents correspond to changes in effluent NO concentration of 3.4+/-0.5 nM, 6.1+/-1.1 nM, and 8.2+/-1.3 nM, respectively. Neither LOS (1 muM) nor CAN (1 nM) significantly affected basal NO production, but both AT1-receptor blockers markedly blunted NO release in response to ANG II (10 nM): 77+/-6% inhibition with LOS (n = 8) and 63+/-9% with CAN (n = 8). These results are the first to demonstrate that ANG II stimulates NO release in isolated renal resistance arteries, and that ANG II-induced NO release is blunted by simultaneous AT1-receptor blockade. Our findings suggest that endothelium-dependent modulation of ANG II-induced vasoconstriction in renal resistance arteries is mediated, at least in part, by AT1-receptor-dependent NO release.  相似文献   

13.
We examined potential mechanisms by which angiotensin subtype-2 (AT2) receptor stimulation induces net fluid absorption and serosal guanosine cyclic 3',5'-monophosphate (cGMP) formation in the rat jejunum. L-arginine (L-ARG) given intravenously or interstitially enhanced net fluid absorption and cGMP formation, which were completely blocked by the nitric oxide (NO) synthase inhibitor, N-nitro-L-arginine methylester (L-NAME), but not by the specific AT2 receptor antagonist, PD-123319 (PD). Dietary sodium restriction also increased jejunal interstitial fluid cGMP and fluid absorption. Both could be blocked by PD or L-NAME, suggesting that the effects of sodium restriction occur via ANG II at the AT2 receptor. L-ARG-stimulated fluid absorption was blocked by the soluble guanylyl cyclase inhibitor 1-H-[1,2,4]oxadiazolo[4, 2-alpha]quinoxalin-1-one (ODQ). Cyclic GMP-specific phosphodiesterase in the interstitial space decreased extracellular cGMP content and prevented the absorptive effects of L-ARG. Angiotensin II (ANG II) caused an increase in net Na+ and Cl- ion absorption and 22Na+ unidirectional efflux (absorption) from the jejunal loop. In contrast, intraluminal heat-stable enterotoxin of Escherichia coli (STa) increased loop cGMP and fluid secretion that were not blocked by either L-NAME or ODQ. These findings suggest that ANG II acts at the serosal side via AT2 receptors to stimulate cGMP production via soluble guanylyl cyclase activation and absorption through the generation of NO, but that mucosal STa activation of particulate guanylyl cyclase causes secretion independently of NO, thus demonstrating the opposite effects of cGMP in the mucosal and serosal compartments of the jejunum.  相似文献   

14.
To determine whether angiotensin II (Ang II) stimulation of adult ventricular myocytes in vitro results in cellular hypertrophy, the changes in myocyte volume and protein content per cell were examined by confocal microscopy. Moreover, the possibility was considered that the upregulation of Ang II receptors on myocytes after infarction may potentiate and/or accelerate Ang II-mediated myocyte growth. Left ventricular myocytes isolated from control and failing hearts 3 days after infarction were cultured for 3 and 7 days in the presence of Ang II. Normal myocytes did not show an increase in volume and protein content at 3 days, but a 16% and 20% increase in these respective parameters was found at 7 days. Cell growth was faster and greater in myocytes from postinfarcted hearts. In these cells, myocyte volume increased 23% and protein content increased 28% at 3 days after Ang II administration. The higher hypertrophic reaction of myocytes from infarcted hearts occurred in spite of a 19% larger volume at isolation. In both groups of myocytes, the AT1 receptor blocker losartan completely inhibited the consequences of Ang II. Conversely, the AT2 receptor antagonist PD123319 had no effect on Ang II-induced hypertrophy. In conclusion, Ang II promotes myocyte growth through the activation of AT1 receptors, which modulate the time and magnitude of this cellular response.  相似文献   

15.
16.
The chronotropic effect of angiotensin II (Ang II) was studied in cultured neurons from rat hypothalamus and brain stem with the use of the patch-clamp technique. Ang II (100 nM) increased the neuronal spontaneous firing rate from 0.8 +/- 0.3 (SE) Hz in control to 1.3 +/- 0.4 Hz (n = 7, P < 0.05). The amplitude of threshold stimulation was decreased by Ang II (100 nM) from 82 +/- 4 pA to 62 +/- 5 pA (n = 4, P < 0.05). These actions of Ang II were reversed by the angiotensin type 1 (AT1) receptor antagonist losartan (1 microM). In the presence of tetrodotoxin, Ang II (100 nM) significantly increased the frequency and the amplitude of the Cd2+-sensitive subthreshold activity of the cultured neurons. Ang II also stimulated the subthreshold early afterdepolarizations (EADs) to become fully developed action potentials. Similar to the action of Ang II, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) increased the firing rate from 0.76 +/- 0.3 Hz to 2.3 +/- 0.5 Hz (n = 6, P < 0.05) and increased the neuronal subthreshold activity. After neurons were intracellularly dialyzed with PKC inhibitory peptide (PKCIP, 5 microM), PMA alone, Ang II alone, or PMA plus Ang II no longer increased the action potential firing initiated from the resting membrane potential level. However, superfusion of PMA plus Ang II or Ang II alone increased the number of EADs that reached threshold and produced action potentials even in the presence of PKCIP (5 microM, n = 4). The actions of Ang II could also be mimicked by depolarizing pulse and K+ channel blockers (tetraethylammonium chloride or 4-aminopyridine). These results indicate that Ang II by activation of AT1 receptors increases neuronal excitability and firing frequency, and that this may involve both PKC dependent and -independent mechanisms.  相似文献   

17.
18.
19.
Angiotensin II (Ang II) importantly contributes to the pathobiology of atherosclerosis. Since endothelial injury is a key event early in the pathogenesis of atherosclerosis, we tested the hypothesis that Ang II may injure endothelial cells by activation of cellular suicide pathways leading to apoptosis. Human umbilical venous endothelial cells (HUVECs) were incubated with increasing doses of Ang II for 18 hours. Apoptosis of HUVECs was measured by ELISA specific for histone-associated DNA fragments and confirmed by DNA laddering and nuclear staining. Ang II dose-dependently induced apoptosis of HUVECs. Simultaneous blockade of both the AT1 and AT2 receptor prevented Ang II-induced apoptosis, whereas each individual receptor blocker alone was not effective. Selective agonistic stimulation of the AT2 receptor also dose-dependently induced apoptosis. Ang II-mediated as well as selective AT2 receptor stimulation-mediated apoptosis was associated with the activation of caspase-3, a central downstream effector of the caspase cascade executing the cell death program. Specific inhibition of caspase-3 activity abrogated Ang II-induced apoptosis. In addition, the NO donors sodium nitroprusside and S-nitrosopenicillamine completely inhibited Ang II-induced apoptosis and eliminated caspase-3 activity. Thus, Ang II induces apoptosis of HUVECs via activation of the caspase cascade, the central downstream effector arm executing the cell death program. NO completely abrogated Ang II-induced apoptosis by interfering with the activation of the caspase cascade.  相似文献   

20.
The migration of coronary artery medial smooth muscle cells (SMCs) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerotic lesions. In the current study, we examined the possible interaction of adrenomedullin, a novel vasorelaxant peptide, and angiotensin II (Ang II) on human coronary artery SMC migration using Boyden's chamber method. Ang II stimulated SMC migration in a concentration-dependent manner between 10(6) and 10(8) mol/L. This stimulation was clearly blocked by the Ang II type 1 receptor antagonist losartan but not by the type 2 receptor antagonist PD 123319. The migration stimulatory effect of Ang II was chemotactic in nature for cultured human coronary artery SMCs but was not chemokinetic. Human adrenomedullin clearly inhibited Ang II-induced migration in a concentration-dependent manner. Human adrenomedullin stimulated cAMP formation in these cells. Inhibition by adrenomedullin of Ang II-induced SMC migration was paralleled by an increase in the cellular level of cAMP. 8-Bromo-cAMP, a cAMP analogue, and forskolin, an activator of adenylate cyclase, inhibited the Ang II-induced SMC migration. These results suggest that Ang II stimulates SMC migration via type 1 receptors in human coronary artery and adrenomedullin inhibits Ang II-induced migration at least partly through a cAMP-dependent mechanism. Taken together with the finding that adrenomedullin is synthesized in and secreted from vascular endothelial cells, this peptide may play a role as a local antimigration factor in certain pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号