首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
使用Gleeble-1500D型热模拟试验机,对挤压态Mg-9Li-3A1-2.5Sr合金进行热力模拟实验(变形温度为200-350℃,应变速率为0.001-1 s-1),分析了材料的流变应力与变形温度和应变速率的关系,建立了该合金热变形过程中的本构方程,计算了该合金的热加工图,并结合显微组织观察对加工图进行了分析.结果表明:材料的流变应力随着应变速率的增加而增加,随着温度的升高而下降;用双曲正弦函数关系式能很好地描述材料在热变形过程中的稳态流变应力;对热加工图的分析结果表明,在实验参数范围内材料的最佳理论热加工区为260-300℃和0.01-1 s-1.材料的超塑性加工区为340-350℃和0.003-0.01 s-1。  相似文献   

3.
目的 确定AlFeCoNiMo0.2高熵合金的热加工工艺参数,为该合金热挤压工艺的制定及优化提供有效依据.方法 采用Gleeble-3800热模拟试验机,在变形温度为900~1150℃,应变速率为0.001~1 s-1,真应变量为0.6的条件下对AlFeCoNiMo0.2高熵合金进行热压缩实验.基于Arrhennius模型对热压缩实验数据进行拟合,建立AlFeCoNiMo0.2高熵合金的Arrhennius本构方程,并绘制AlFeCoNiMo0.2高熵合金在不同真应变下的热加工图.结果 AlFeCoNiMo0.2高熵合金的流变应力值与应变速率呈正相关,与变形温度呈负相关;Arrhennius热变形本构方程的平均相对误差为3.97%;该合金热加工图中的流变失稳区分别为900~1120℃/0.1~1 s-1和1120~1150℃/0.2~1 s-1;热加工安全区为1075~1150℃/0.001~0.01 s-1;最佳热加工工艺参数为:1090~1125℃/0.001~0.002 s-1.结论 AlFeCoNiMo0.2高熵合金的热变形过程为加工硬化和动态再结晶为主的动态软化,建立的Arrhennius本构方程可较好地描述该合金的热变形行为,绘制的热加工图可为该合金热挤压工艺的制定及优化提供有效指导.  相似文献   

4.
利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10s~(-1)条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10s~(-1)范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58k J/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg_2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。  相似文献   

5.
采用Gleeble-3800热模拟机研究Al-8.9Zn-1.3Mg-0.1Sc-0.1Er-0.1Zr铝合金的热变形行为,构建温度380~440℃、应变速率0.01~10 s^(-1)区间内合金的热加工图,使用X射线衍射(XRD)、选区电子衍射(SAED)与能谱(EDS)对合金中存在的物相进行分析,并使用金相显微镜(OM)和透射电子显微镜(TEM)观察合金热变形后的微观组织。结果表明:合金的最佳热加工工艺参数区间为:400℃相似文献   

6.
7.
利用Gleeble-1500D热模拟试验机,在温度为1050~1250℃、应变速率为0.001~0.1s-1、真应变量0.16的条件下,研究和分析SA508Gr.4N钢高温塑性变形及动态再结晶行为。结果表明:SA508Gr.4N钢的高温真应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;在真应力-应变曲线的基础上,建立材料热变形本构方程,较好地表征了材料高温流变特征,其热激活能为383.862kJ/mol;其硬化率-应力(θ-σ)曲线均呈现拐点且-dθ/dσ-σ曲线出现极小值;临界应变随应变速率的增大与变形温度的降低而增加,且临界应变(εc)与峰值应变(εp)之间具有一定相关性,即εc/εp=0.517;临界应变与Z参数之间的函数关系为εc=8.57×10-4 Z0.148。  相似文献   

8.
何春雨  余伟  程知松  王铭阳  唐荻 《材料导报》2021,35(18):18153-18162
使用GLEEBLE 3500研究了高强耐蚀车体用钢在热变形过程中动态再结晶、静态再结晶的规律,建立了变形抗力模型.通过单道次压缩实验,得到了温度与应变速率对变形抗力影响的模型,推导出高强耐蚀钢的动态再结晶发生时的激活能;通过双道次压缩实验,研究了形变温度和道次间停留时间对应力-应变曲线的影响规律,建立了高强耐蚀钢奥氏体静态再结晶动力学方程,计算了高强耐蚀钢的静态再结晶激活能.结果表明:形变温度和应变速率是对单道次压缩应力-应变曲线影响最明显的两个因素.在相同温度下,变形速率越大,高强耐蚀钢的峰值应力越大;在应变速率一致的情况下,温度降低峰值应力增大.变形温度和道次间隔时间对高强耐蚀钢的双道次压缩应力-应变曲线的影响明显.变形温度越高,道次间隔时间越长,高强耐蚀钢的静态再结晶程度越高,软化作用越明显.  相似文献   

9.
目的 研究A100钢的热变形行为,确定热加工范围并优化工艺参数.方法 使用Gleeble-3800热模拟实验机,对A100钢进行应变为0.6,变形温度为1073~1473 K,应变速率为0.01~10 s–1的等温热压缩实验.利用A100钢的热压缩实验数据,建立在不同变形温度、不同应变速率下的真应力-真应变曲线.建立A100钢基于唯象的本构模型与基于物理的本构模型以及基于Murty失稳准则的热加工图.结果 当应变速率一定,温度升高或一定,应变速率下降时,A100钢的流变应力会减小,流变应力曲线上主要表现为动态再结晶的软化机制.结论 构建的基于唯象的本构方程可以对A100钢在应变为0.6时的流变应力进行较好的预测,基于物理的本构方程可以反映出A100钢的物理特性,通过构建的基于Murty失稳准则的加工图可以得到A100钢的加工范围是温度为1173~1223 K,应变速率为0.01~0.1 s–1和温度为1323~1373 K,应变速率为0.05~0.15 s–1时.  相似文献   

10.
利用Gleeble-3800热力模拟试验机在900~1 200℃、0.01~10s~(-1)的实验条件下,对含稀土H13进行了热压缩。根据获取的流变应力曲线,建立了含稀土H13钢的高温热变形本构方程及热加工图,并分析了变形后的金相组织。结果表明,在高应变速率下流变应力曲线说明了含稀土H13钢具有断续再结晶行为,稀土的加入显著提升了H13钢的应力值,经计算含稀土H13钢的热激活能为573kJ/mol,适宜的热加工参数为1 050~1 200℃、应变速率0.01~1s~(-1)。稀土的加入拓宽了H13钢的热加工参数范围。  相似文献   

11.
High strain isothermal compression tests at temperatures of 700–1200°C and strain rates of 0.1–50?s?1 were performed in a Gleeble-3800 thermal simulator to investigate the hot deformation behaviour of a high-alloy Cr–Co–Mo–Ni gear steel, and the constitution equation and hot processing map were established based on these experiments. The results show that the flow stress can be described by the constitutive equation in hyperbolic sine function, and the optimum hot working regions are at the temperature of 1000–1100°C and strain rate of 0.3–1.0?s?1. Optical microscopy observations of austenite grains indicate that dynamic recrystallisation occurs when the deformation temperature is over 900°C. The forging was successfully produced on the basis of the above-described researches.  相似文献   

12.
Hot deformation behaviour of Fe-25Mn-3Si-3Al twinning-induced plasticity (TWIP) steel was investigated by hot compression testing on Gleeble 3500 thermo-mechanical simulator in the temperature range from 800 to 1100 °C and at strain rate range from 0.01 to 5 s−1, and the microstructural evolution was studied by metallographic observations. The results show that the true stress-true strain curves exhibit a single peak stress at certain strain, after which the flow stresses decrease monotonically until the end of deformation, showing a dynamic flow softening. The peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be predicted by the Zener-Hollomon (Z) parameter in the hyperbolic sine equation with the hot deformation activation energy Q of 405.95 kJ/mol. The peak and critical strains can also be predicted by Z parameter in power-law equations, and the ratio of critical strain to peak strain is about 0.7. The dynamic recrystallization (DRX) is the most important softening mechanism for the experimental steel during hot compression. Furthermore, DRX procedure is strongly affected by Z parameter, and the decreasing of Z value leads to more extensive DRX.  相似文献   

13.
采用Gleeble-1500热模拟试验机对一种中碳钒微合金钢在变形温度900~1 100℃、应变速率0.01~10 s-1条件下的热变形行为进行研究.分别建立了实验钢的幂律、指数和双曲正弦本构方程,观察了实验钢在不同变形条件下的显微组织,得出了实验钢的动态再结晶稳态晶粒尺寸和峰值应变与Zener-Hollomon参数的关系.结果表明:双曲正弦本构方程具有最高的拟合精度;实验钢热变形激活能Q为273.225 kJ/mol,与奥氏体的自扩散激活能(270 kJ/mol)十分接近,说明实验钢在此变形条件下的速率控制机制是扩散控制的位错攀移;显微组织观察表明,实验钢的动态再结晶行为受变形温度和应变速率的影响;拟合得出实验钢的动态再结晶稳态晶粒尺寸(Ds)和峰值应变与Z参数的关系为ln Ds=-0.200 31ln Z+7.941 65和lnεp=0.184 56ln Z-5.373 83.  相似文献   

14.
目的 研究铸态合金Mg?2Sc?2Y?0.5Zr合金热压缩行为及热加工图,根据合金的用途和再结晶程度,确定最佳热加工艺参数,为合金后续变形提供参考。方法 通过实验设计合金成分,称取一定质量的纯镁锭和二元中间合金,在真空熔炼炉中加热至760 ℃,保温至熔化,搅拌,静止,然后在钢磨具中空冷,得到合金锭。实际成分通过电感耦合等离子体原子发射光谱法测定;切取合适大小的铸锭进行X射线衍射实验。用于热压缩的铸态样品为圆柱形试样(?10 mm×15 mm) ,在进行热压缩实验前,对所有样品表面进行抛光。使用Gleeble?3800热压缩模拟试验机对铸态Mg?2Sc?2Y?0.5Zr合金进行热压缩试验,变形温度为573~723 K,应变速率为0.001~1 s?1。经热压缩后将各试样立即进行水淬,以保持压缩变形组织。将压缩样品沿着纵轴切割压缩样品,然后抛光、蚀刻,并使用扫描显微镜进行检查,以观察微观结构的演变,计算该合金的变形激活能,并构建合金高温变形的本构方程,建立真应变为0.5时的热加工图。结果 得到了铸态Mg?2Sc?2Y?0.5Zr合金热变形本构方程及真应变为0.5时的热加工图,合金热变形发生了动态回复和动态再结晶,合金的热变形激活能Q为198.58 kJ/mol。结论 根据用途和再结晶程度,铸态Mg?2Sc?2Y?0.5Zr合金的最佳加工参数为变形温度623~673 K、应变速率0.001~0.01 s?1,以及变形温度723 K、应变速率0.001~1 s?1。  相似文献   

15.
为了研究只含准晶相Mg-Zn-Y合金的高温力学性能并获得其较优的加工参数,本文首先制备了含有I-Phase的挤压Mg-4.5Zn-0.75Y(原子数分数/%,下同)合金,并在Gleeble-3500热/力模拟实验机上对其高温变形行为进行了研究,实验温度为300、350、400℃,应变速率为0.01、0.1、1 s~(-1).在此基础上,建立了该合金的流变应力本构方程及DMM加工图,并结合压缩后的显微组织制定较优的加工工艺参数.结果表明:应变速率和加工温度对流变应力有显著的影响;挤压Mg-4.5Zn-0.75Y合金的平均变形激活能和应力指数分别为107.95 kJ/mol和3.996 6;挤压Mg-4.5Zn-0.75Y合金具有较好的热塑性,在实验条件下并没有发生失稳现象,说明准晶相的存在提高了合金的变形能力;压缩后的显微组织显示,当温度为300~350℃、应变速率0.1~1s~(-1)时,合金压缩后为均匀细小的等轴晶;综合Mg-4.5Zn-0.75Y合金的加工图与压缩后的显微组织图,确定了该合金热加工的较优工艺参数为:θ=300~350℃;ε·=0.1~1s~(-1).  相似文献   

16.
目的 研究SUS304奥氏体不锈钢的热变形行为.方法 在GLEEBLE-3500热力模拟实验机上对SUS304不锈钢进行了等温热压缩实验,变形温度为850~1250℃,应变速率为0.01,0.1,1 s?1,真应变为0.69,基于Arrhenius模型构建了本构方程,并建立了3D热加工图.结果 实验钢在850~1050...  相似文献   

17.
The hot deformation behavior of a Fe‐25Ni‐16Cr‐3Al alumina‐forming austenitic steel was studied by hot compression using a Gleeble‐3500 thermal simulator. The compression tests were carried out in the temperatures range from 925 °C to 1175 °C and strain rates range from 0.01 s‐1 to 10 s‐1. It was concluded that the flow stress increased with decreasing deformation temperature and increasing strain rate. The constitutive equation was obtained and the activation energy was 420.98 kJ?mol‐1 according to the testing data. According to the achieved processing map, the optimal processing domain is determined in the temperatures range of 1050 °C – 1075 °C and strain rates range of 0.03 s‐1 ‐ 0.3 s‐1. The evolution of microstructure characterization is consistent with the rules predicted by the processing map. During compression at the same temperature, the higher the strain rate is, the higher the hardness will be. The ultimate tensile strength of the steel is 779 MPa with a total elongation of 27.1 % at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号