首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
以布尔台煤矿上下煤层叠加采动影响下保留巷道严重变形破坏为工程背景,采用理论分析、现场监测、实验室试验、数值模拟和工业性试验等综合研究方法,从巷道围岩塑性区形成和发展的角度,对巷道围岩破坏特征、采动应力时空演化规律、保留巷道塑性区恶性扩展破坏机理、应力调控围岩控制技术方面进行系统研究。结果表明:上下煤层叠加采动后,保留巷道处于高应力比值带,主应力比值为1.84~2.22,最大主应力与竖直方向夹角为39.7°~41.9°,导致巷道围岩塑性区恶性扩展,顶板破坏深度7.5 m,底板破坏深度4.5 m,煤柱帮破坏深度3 m,煤壁帮破坏深度2.25 m。基于塑性区破坏机理提出应力调控技术,通过改变煤柱尺寸或上下工作面开采布局等手段调控围岩应力,减小围岩塑性破坏范围,并进行工业性试验,取得良好的应用效果。  相似文献   

2.
软弱顶板条件下,巷道在原岩应力与采动应力叠加作用下会出现深度较大的塑性破坏区,引发剧烈的巷道围岩变形,甚至出现冒顶隐患。为掌握采动过程中塑性区在软弱顶板中的演化规律,以敏东一矿回采巷道为工程背景,系统研究了采动前后巷道围岩塑性区分布与演化特征,结果表明:在本工作面超前支承压力和上区段工作面采空区侧向支承压力的叠加影响下,采动巷道周边两个主应力比值急剧升高,同时,受邻近工作面覆岩移动影响,巷道围岩周边应力中的最大主应力方向也将发生大幅度的偏转。伴随着软弱顶板采动巷道围岩主应力大小和方向的不断演化,最大塑性破裂深度逐渐扩展且朝向顶板,塑性区扩展过程中会出现隔层分布现象,顶板剧烈变形主要是由塑性破坏产生,各层位顶板的破裂顺序依次为浅部塑性破坏、高位软岩塑性破坏和中位岩层的破裂。中部层位的断裂破坏一般滞后于高位穿透塑性区的形成。期间巷道围岩出现严重的非均匀性大变形,支护难度极大。据此提出了以注浆锚索为核心的顶板控制方法,注浆层位应主要集中在采动期间发生高位穿透塑性破坏的层位,注浆覆盖范围应不小于高位穿透塑性破坏的分布范围,巷道顶板变形监测结果表明,顶板控制效果良好,顶板未出现安全隐患且变形量在允许范围内。  相似文献   

3.
为了研究开采扰动诱发底板瓦斯抽采巷围岩失稳问题,以龙凤煤矿5921底板瓦斯抽采巷为研究对象,采用数值模拟的方法分析了5921工作面开采过程中底板瓦斯抽采巷围岩应力演化过程及围岩变形破坏特征。研究结果表明:垂直应力在巷道跨度范围内随深度增加而增大,巷道位于工作面前方的位置,围岩应力分布特征大致相同,巷道位于采空区的部位,左帮岩体处于卸荷状态,而右帮岩体出现明显的应力集中现象;围岩变形在时空上相较工作面开采有一定的滞后,底板瓦斯抽采巷最大变形位置滞后于回采工作面10~30 m,工作面前方10 m范围内围岩变形呈增加趋势;底板瓦斯抽采巷位于采空区范围内的部位破坏以拉伸破坏为主,位于煤壁前方支承压力区的部位破坏则以拉伸-剪切组合破坏模式为主,巷道顶板垮落、底鼓的风险较大。  相似文献   

4.
为研究重复采动条件下覆岩变形破坏特征,采用数值模拟方法针对覆岩应力场、位移场、工作面超前支承压力分布特征进行分析,研究多次重复采动条件下围岩塑性区演化特征。结果表明:不同工作面的采空区同时形成应力拱壳结构;围岩支承压力峰值则整体呈现“先增大、后减小”的演化趋势。顶板下沉量受重复采动影响而不断增加,随着顶板塑性区与上层煤底板塑性区贯通,顶板产生大范围变形破坏。  相似文献   

5.
《煤炭技术》2021,40(8):27-31
针对王家塔煤矿3s101工作面采空区侧保留巷道受采动影响导致围岩破坏变形的问题,采用现场监测、理论分析、数值模拟等研究方法,对采动影响下保留巷道的围岩变形破坏特征、采动应力分布规律、以及围岩塑性破坏特征进行了研究。结果表明:受工作面采动影响,保留巷道位移变化主要在工作面后方顶底板,最大顶底板移近量达310 mm;巷道围岩主应力、主应力比值、最大主应力与z轴夹角的变化值在工作面后方175 m左右达到最大,最大主应力达到16 MPa,主应力比值达到2.32,最大主应力与z轴的夹角偏转至20°左右;受采动应力的影响,巷道围岩塑性破坏区也主要发生在工作面后方,塑性破坏范围在工作面后方175 m左右达到最大,顶板最大破坏深度达7.5 m。针对性地提出了“锚索+钢带”加强支护顶板的补强治理方案,保证了巷道围岩稳定,回采期间安全生产。  相似文献   

6.
为进行采动影响下煤层底板变形破坏规律的研究,建立底板破坏深度求解力学模型,依据关键层理论和弹性理论得到沿走向底板内支承压力传播规律,再借助FLAC3D数值模拟软件分析3煤底板破坏特征,将倾斜煤层底板采动最大破坏深度按照相关理论进行核算。研究表明:底板浅位置的岩层,垂直应力等值线变化梯度相对较大,形状为半椭圆形;工作面回采重新达到平衡后,煤层底板的主要破坏形式为剪切破坏,且3煤工作面采动底板破坏最大破坏深度在21 m左右,底板巷道塑性区无明显增加;滑移线理论计算出采空区底板最大屈服破坏深度为10.68 m,而3号煤底板巷道与3号煤层相距约30 m,3号煤层的开采几乎不会对底板巷道造成影响,计算结果与仿真模拟结论相近。  相似文献   

7.
曙光煤矿煤层底板层理发育,1208孤岛工作面回采巷道底板受支承压力影响大,引发底板产生剪切滑移。基于岩体力学理论,计算了巷道底板的破坏深度,分析了不同阶段孤岛工作面底板破坏的区域;运用FLAC3D软件分析了巷道围岩在不同回采阶段的支承压力集中系数,根据塑性区分布特征,得出了孤岛工作面回采期间巷道的破坏类型、巷道底板的破坏类型和破坏深度。  相似文献   

8.
针对曹村煤矿500水平大巷围岩变形量大和支护结构失效等现象,综合采用理论分析、数值模拟和现场实测的方法分析了大巷反复破坏的关键因素,研究了巷道围岩失稳机理及塑性区演化规律。研究结果表明:相邻工作面采动影响在500水平大巷变形反复破坏中起到了主控作用。受采动应力叠加影响,巷道塑性区由圆形演化为椭圆形,帮部塑性区向深部扩展,而顶底板受高应力压缩作用,塑性区回缩。在此基础上采用"治底先治帮"的方案,修复方案实施后,顶底板变形量从1000mm减少至103mm,帮部相对移近量从1200mm减少至113mm。在采动影响下围岩裂隙发育范围虽有所增加,但仍未超出锚杆(索)的锚固范围,巷道围岩变形得到有效控制。  相似文献   

9.
《煤矿安全》2021,52(10):211-216
以煤矿现场为工程背景,建立了水平岩床侵入条件下的力学模型,分析了岩床侵入区域原岩应力分布特征;基于FLAC~(3D)软件构建了数值模型,研究了岩床侵入对巷道围岩应力场、变形场、塑性区与工作面超前支承压力分布规律的影响。结果表明:岩床侵入后的原岩应力集中系数随煤岩弹性模量比值的减小而不断增大,随着侵入岩床厚度的增大而不断增大;岩床侵入的巷道围岩应力集中程度显著,煤岩体易于发生压剪破坏,对围岩破坏范围影响较大;随着回采工作面不断靠近岩床侵入区域,工作面超前支承压力分布受岩床侵入影响程度逐渐加大,应力突变特征逐渐显现,对围岩稳定不利。  相似文献   

10.
近距离煤层一般选用下行开采方式,上部工作面回采之后对采空区下回采巷道形成支承压力。通过监测某矿井近距离煤层采空区下回采工作面巷道、围岩结构、围岩变形程度和测量松动圈,结果发现:煤柱帮破碎、裂隙发育,顺槽两帮移近量最大值近0.43 m,顶底板移近量最大值达到0.48 m,巷道松动圈最大为1.1 m。受采动超前支承应力影响后,巷道松动圈增加至2.3 m,30 m范围是整个测试的工作面超前支承压力影响区。  相似文献   

11.
为进行膏体充填开采工作面超前支护进行优化设计,对1331大采高膏体充填工作面巷道超前矿压规律进行研究,通过超前巷道围岩钻孔应力监测观测,研究得到了工作面超前支承压力影响范围及程度,了解了巷道受超前支承压力采动影响情况。结果表明:膏体充填开采工作面超前前方受支承压力扰动的距离约为30m,扰动剧烈的距离约为10m,工作面前方煤壁的破坏区为3.6m,工作面开采对前方巷道扰动程度相对采空区全部垮落法工作面较低。在此基础上确定了合理有效的巷道超前支护优化方案,达到了降低工人的劳动强度的目标。  相似文献   

12.
针对工作面底板含隐伏断层条件下底板水害多发的问题,综合数值计算与现场实测2种方法探究底板岩体采动破坏特征。模拟结果得出:底板塑性区范围随工作面推进距离增加而扩大,距底板隐伏断层远场的完整型底板岩体最大破坏深度约为18 m,靠近底板隐伏断层的岩体最大破坏深度约为28 m,隐伏断层活化是促进底板破坏深度增加的积极因子;受隐伏断层存在的影响,底板岩体采动破坏范围呈现出以过隐伏断层顶部竖轴为对称轴的正"八"型破坏形态;钻孔窥视实测得到采动破坏影响范围内呈现出裂缝贯通型"环形"破坏圈的特征,底板采动破坏深度最大值约为29 m。结果表明:受隐伏断层和采动应力影响,底板破坏深度明显增大,且扩展路径沿着隐伏断层顶部斜向下发展,数值模拟与实测结果误差约为3.4%。  相似文献   

13.
为了探究煤矿底板采动破坏规律,以内蒙古不连沟煤矿F6106工作面为试验现场,分别从现场注水试验、底板岩层应变探测、理论预测计算三个方面对煤层底板采动破坏规律进行分析,现场底板探测得出底板岩层在工作面推到测点时出现第一次破坏,破坏深度约为18.5m,当工作面推过测点15~20m后,采空区底板岩层破坏深度出现二次加深现象,破坏深度加深1m,采后底板破坏最大深度为19.5m;Griffith破坏准则下的底板弹性理论预测结果得出底板最大破坏深度与煤层埋深H、工作面应力集中系数n、底板岩体的单轴抗拉强度Rt有关,底板最大破坏深度随着埋深、支承压力增大而增大,随底板岩体的单轴抗拉强度的增大而减小。工程实践表明,F6106工作面底板破坏深度现场探测结果与理论预测结果一致。  相似文献   

14.
跨采巷道的围岩稳定性预测与控制   总被引:3,自引:0,他引:3  
利用数值仿真的方法研究了在移动支承压力作用下,煤层底板巷道围岩的位移、应力和塑性区发展规律以及采煤工作面位置对其底板巷道围岩位移的影响.研究结果表明,在跨采过程中,跨采对底板巷道的影响范围为采煤工作面前65 m至工作面后25 m,同时在应力增高区范围内的巷道围岩位移最大,在应力降低区范围内的巷道围岩位移最小,巷道围岩位移最大值发生在采煤工作面前15 m处,最小值则发生在采煤工作面后5 m处;在采煤工作面的推进过程中其下部巷道顶板、底板和两帮均处在不稳定阶段,可采用锚杆、锚索与注浆联合加固技术措施,以保证底板巷道跨采期间的安全使用.  相似文献   

15.
为研究近距离煤层群下行开采工作面煤体破坏特征和矿压显现规律,本文采用PHASE 2D有限元分析软件建立数值模型,研究了杨家寨煤矿近距离煤层下行开采重复采动影响下工作面煤壁破坏特征、围岩应力分布规律及覆岩移动演化特征。数值模拟结果显示:(1)工作面煤壁在顶底板挤压作用下外鼓,下煤层较上煤层的煤壁破坏更为明显,上、下煤层工作面最大塑性区宽度分别为2.43 m和3.18 m;(2)随着工作面的推进,工作面支承压力增高系数峰值先增大后稳定,上煤层支承压力增高系数稳定在1.60左右,而下煤层支承压力增高系数稳定在1.52左右;(3)上、下煤层工作面各推进200 m时,覆岩最大位移分别为36 mm和73mm,但上煤层工作面达到了充分采动,覆岩最大位移不再增大,而下煤层工作面仍处于非充分采动阶段,覆岩最大位移将随工作面的推进继续增大。  相似文献   

16.
利用数值仿真的方法研究了在移动支承压力作用下,煤层底板巷道围岩的位移、应力和塑性区发展规律以及采煤工作面位置对其底板巷道围岩位移的影响.研究结果表明,在跨采过程中,跨采对底板巷道的影响范围为采煤工作面前65m至工作面后25m,同时在应力增高区范围内的巷道围岩位移最大,在应力降低区范围内的巷道围岩位移最小,巷道围岩位移最大值发生在采煤工作面前15m处,最小值则发生在采煤工作面后5m处;在采煤工作面的推进过程中其下部巷道顶板、底板和两帮均处在不稳定阶段,可采用锚杆、锚索与注浆联合加固技术措施,以保证底板巷道跨采期间的安全使用.  相似文献   

17.
随着煤炭开采深度的增加,采动巷道大变形、难支护、反复修复等问题较为突出。针对深部厚煤层采动巷道支护难题,采用钻孔成像仪探测深部厚煤层采动巷道围岩松动破碎区分布特征及范围,采动巷道松动破碎范围约为2.8~3.7 m,属于大松动圈不稳定围岩。开展深部厚煤层采动应力分布规律及巷道失稳特征相似材料模型试验与FLAC3D数值模拟分析,揭示工作面回采时采动应力传递规律及采动巷道围岩变形场、应力场与塑性区的分布特征,确定深部厚煤层工作面停采线距离巷道约50 m,以降低采动应力对煤层底板巷道稳定性的影响。基于理论分析及支护结构承载特性模型试验等,提出深部厚煤层采动巷道锚网索注梯级支护技术,并成功应用于郭屯煤矿-808 m水平进风大巷支护工程实践。现场矿压监测结果表明,采动巷道围岩变形持续约60 d后趋于稳定,围岩顶板最大下沉量为71~75 mm、底板最大鼓起量为63~69 mm、帮部最大内挤量为94~118 mm,未发生冒顶与片帮等事故,取得良好的支护效果。  相似文献   

18.
为研究深部倾斜煤层底板破坏特征及破坏深度,以羊东煤矿8469工作面为研究对象,采用理论分析、数值模拟和现场实测相结合的方法,对煤层采后底板应力分布规律、塑性区发育特征及破坏深度进行了研究。通过数值模拟与理论分析可知:煤层开采后,作用在周围煤岩体上的支承压力产生不同的应力分区。沿煤层走向方向,应力呈对称性变化,形状近似马鞍状,在工作面两端处产生应力集中;沿煤层倾向方向,倾斜剪切力的存在使底板岩体由采动破坏转变成滑移破坏,塑性破坏区和应力变化大致呈勺型分布形态,最大应力集中区出现在工作面下侧。随着工作面向前推进,底板破坏范围相应增大,但推进255m后,破坏深度不再增加。现场实测表明,底板浅部岩层最早受到扰动,且受到的扰动程度最高。扰动范围随最大注水量的减少而增加,在底板下25m范围内的岩层受影响较小。由此可知,该工作面底板破坏深度为25.0~29.2m。  相似文献   

19.
为探究侧向采动应力分布规律,运用弹塑性力学理论建立煤岩体侧向采动力学分析模型,同时引入Weibull分布函数,得到煤岩体侧向采动应力方程和破坏深度方程。以顾桥1126( 1 )工作面为背景,解出煤体侧向采动应力、应力集中系数和塑性破坏深度,并研究各因素对采动应力分布的影响,指导沿空巷道支护设计,研究结果表明:① 煤体强度、界面强度、支护强度和煤厚影响煤体稳定性,煤体稳定性增高时,采动影响范围和塑性破坏深度减小,应力集中系数增大;② 原岩应力和悬臂梁长度决定煤体原始受力,随煤体受力的增加,塑性破坏深度、采动应力和采动影响范围均增加。根据沿空巷道围岩状态,提出高预紧力全长锚固锚杆+锚索+钢带+金属网的非对称锚网索密集支护方案。现场实测表明:1126( 1 )回风巷的支护效果良好,可满足回采巷道安全生产的预期要求。  相似文献   

20.
为解决红庆梁矿双巷留巷在一次采动后围岩失稳的问题,通过数值模拟对2次采动影响下的主应力差值分布特征及留巷在不同应力阶段下的塑性区特征进行研究。结果表明:留巷围岩主应力差值在一次采动和二次采动影响下经历了5个阶段,且呈现出阶段性增加的特征;留巷围岩在一次采动期间顶板塑性区由1.2 m增大到2.1 m,煤壁帮和煤柱帮塑性区由0.5 m分别增大到2.0 m和1.5m,在受二次采动应力影响后塑性区的扩展呈非对称的特点,顶板塑性区在煤柱帮侧塑性破坏较多,破坏深度可达3.0 m,两帮塑性破坏较对称,塑性破坏范围可达2.5 m。最终提出针对性的补强支护措施,现场应用后围岩顶底板移近量减小了38%,两帮移近量减小了36%,维护了巷道围岩的稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号