首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dramatic improvement of inversion channel mobility in 4H-SiC MOSFETs was successfully achieved by utilizing the (112¯0) face: 17 times higher (95.9 cm2/Vs) than that on the conventional (0001) Si-face (5.59 cm2/Vs). A low threshold voltage of MOSFETs on the (112¯0) face indicates that the (112¯0) MOS interface has fewer negative charges than the (0001) MOS interface. Small anisotropy of channel mobility in 4H-SiC MOSFETs (μ(11¯00)(0001)=0.85) reflects the small anisotropy in bulk electron mobility  相似文献   

2.
The inversion channel mobility of 4H and 6H-SiC(0001) metal-oxide-semiconductor field-effect transistors (MOSFETs) has been evaluated for its dependence on the re-oxidation annealing (ROA) conditions in a wet oxidizing ambient. The wet ambient was supplied by the pyrogenic reaction of hydrogen and oxygen gas (pyrogenic ROA), where the water vapor content (ρ(H2O)) was controlled by adjusting the hydrogen/oxygen gas flow rate. Not only the annealing temperature and the time, but also ρ(H2O) are found to be the critical parameters for improving channel mobility. As a result, field-effect channel mobilities as high as 47 cm2/Vs for 4H and 95 cm2/Vs for 6H-SiC MOSFETs were achieved by pryrogenic ROA treatment with a ρ(H2O) of 50%  相似文献   

3.
The electrical and optical properties of the hydrogenated amorphous silicon (a-Si:H) films deposited by inductively-coupled plasma (ICP) chemical vapor deposition (CVD) with a variation of H2 flow rate have been studied. The photosensitivity of a-Si:H is ~107 when the H2/SiH4 ratio is between 3 and 8. With increasing H2/SiH4, the SiH2 mode infrared absorption has a minimum at a H2/SiH4 ratio of 8. Coplanar a-Si:H thin-film transistors (TFT's) were fabricated using a triple layer of thin a-Si:H, silicon-nitride, and a-Si:H deposited by ICP-CVD using ion doping and low resistivity Ni silicide. After patterning the thin a-Si:H/silicon-nitride layers on the channel region, the gate and source/drain regions were ion-doped and then heated at 230°C to form Ni silicide layers. The low resistive Ni silicide formed on the a-Si:H reduces the offset length between gate and source/drain, leads to a coplanar a-Si:H TFT. The TFT exhibited a field effect mobility of 0.6 cm2/Vs and a threshold voltage of 2.3 V at the H2/SiH4 ratio of 8. The effect of H2 dilution in SiH4 on the coplanar a-Si:H TFT performance has been investigated. We found that the performance of the TFT is the best when the SiH2 mode density in a-Si:H is the minimum. The coplanar TFT is very suitable for large-area, high density TFT displays because of its low parasitic capacitance between gate and source/drain contacts  相似文献   

4.
The H2 cleaning technique was examined as the precleaning of the gate oxidation for 4H-SiC MOSFETs. The device had a channel width and length of 150 and 100 μm, fabricated on the p-type epitaxial layer of 3×1016 cm-3. The gate oxidation was performed after the conventional RCA cleaning, and H2 annealing at 1000°C. The obtained channel mobility depends on the pre-cleaning process strongly, and was achieved 20 cm2/N s in the H2 annealed sample. The effective interface-state density was also measured by the MOS capacitors fabricated on the same chips, resulting 1.8×1012 cm-2 from the photo-induced C-V method  相似文献   

5.
We have fabricated buried channel (BC) MOSFETs with a thermally grown gate oxide in 4H-SiC. The gate oxide was prepared by dry oxidation with wet reoxidation. The BC region was formed by nitrogen ion implantation at room temperature followed by annealing at 1500°C. The optimum doping depth of the BC region has been investigated. For a nitrogen concentration of 1×1017 cm-3, the optimum depth was found to be 0.2 μm. Under this condition, a channel mobility of 140 cm2/Vs was achieved with a threshold voltage of 0.3 V. This channel mobility is the highest reported so far for a normally-off 4H-SiC MOSFET with a thermally grown gate oxide  相似文献   

6.
In this paper, we investigate the effect of counter-doping of nitrogen at the channel region of epitaxial n-channel 4H-SiC MOSFETs on the channel mobility and the threshold voltage. From this study, we have found that the channel mobility steeply improves as the nitrogen dose increases. At a dose of 2× or 2.5×1012 cm-2 the enhancement MOSFET has achieved an effective channel mobility of 20 cm2/Vs or a field effect mobility of 38 cm2/Vs at a peak  相似文献   

7.
The use of aluminum oxide as the gate insulator for low temperature (600°C) polycrystalline SiGe thin-film transistors (TFTs) has been studied. The aluminum oxide was sputtered from a pure aluminum target using a reactive N2O plasma. The composition of the deposited aluminum oxide was found to be almost stoichiometric (i.e., Al2O3), with a very small fraction of nitrogen incorporation. Even without any hydrogen passivation, good TFT performance was measured an devices with 50-nm-thick Al2O3 gate dielectric layers. Typically, a field effect mobility of 47 cm2/Vs, a threshold voltage of 3 V, a subthreshold slope of 0.44 V/decade, and an on/off ratio above 3×105 at a drain voltage of 0.1 V can be obtained. These results indicate that the direct interface between the Al2 O3 and the SiGe channel layer is sufficiently passivated to make Al2O3 a better alternative to grown or deposited SiO2 for SiGe field effect devices  相似文献   

8.
The authors have fabricated a new low temperature polycrystalline silicon (poly-Si) thin film transistor (TFT) with silicon nitride (SiN x) ion-stopper and laser annealed poly-Si. The fabricated poly-Si TFT using SiNx as the ion-stopper as well as the gate insulator exhibited a field effect mobility of 110 cm2/Vs, subthreshold voltage of 5.5 V, subthreshold slope of 0.48 V/dec., and on/off current ratio of ~106. Low off-state leakage current of 2.4×10-2 A/μm at the drain voltage of 5 V and the gate voltage of -5 V was achieved  相似文献   

9.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

10.
High-performance inversion-type enhancement-mode n-channel In0.53Ga0.47As MOSFETs with atomic-layer-deposited (ALD) Al2O3 as gate dielectric are demonstrated. The ALD process on III-V compound semiconductors enables the formation of high-quality gate oxides and unpinning of Fermi level on compound semiconductors in general. A 0.5-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 8 nm shows a gate leakage current less than 10-4 A/cm2 at 3-V gate bias, a threshold voltage of 0.25 V, a maximum drain current of 367 mA/mm, and a transconductance of 130 mS/mm at drain voltage of 2 V. The midgap interface trap density of regrown Al2O3 on In0.53Ga0.47As is ~1.4 x 1012/cm2 ldr eV which is determined by low-and high-frequency capacitance-voltage method. The peak effective mobility is ~1100 cm2 / V ldr s from dc measurement, ~2200 cm2/ V ldr s after interface trap correction, and with about a factor of two to three higher than Si universal mobility in the range of 0.5-1.0-MV/cm effective electric field.  相似文献   

11.
In this letter, high-performance low-temperature poly-Si p-channel thin-film transistor with metal-induced lateral- crystallization (MILC) channel layer and TaN/HfO2 gate stack is demonstrated for the first time. The devices of low threshold voltage VTH ~ 0.095 V, excellent subthreshold swing S.S. ~83 mV/dec, and high field-effect mobility muFE ~ 240 cm2/V ldr s are achieved without any defect passivation methods. These significant improvements are due to the MILC channel film and the very high gate-capacitance density provided by HfO2 gate dielectric with the effective oxide thickness of 5.12 nm.  相似文献   

12.
We have demonstrated that the performance of the inverted staggered, hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) is improved by a He, H2, NH3 or N2 plasma treatment for a short time on the surface of silicon nitride (SiN x) before a-Si:H deposition. With increasing plasma exposure time, the field-effect mobility increase at first and then decrease, but the threshold voltage changes little. The a-Si:H TFT with a 6-min N2 plasma treatment on SiNx exhibited a field effect mobility of 1.37 cm2/Vs, a threshold voltage of 4.2 V and a subthreshold slope of 0.34 V/dec. It is found that surface roughness of SiNx is decreased and N concentration in the SiN x at the surface region decreases using the plasma treatment  相似文献   

13.
A new 4H-SiC trench-gate MOSFET structure with epitaxial buried channel for accumulation-mode operation, has been designed and fabricated, aiming at improving channel electron mobility. Coupled with improved fabrication processes, the MOSFET structure eliminates the need of high dose N+ source implantation. High dose N+ implantation requires high-temperature (1550 °C) activation annealing and tends to cause substantial surface roughness, which degrades MOSFET threshold voltage stability and gate oxide reliability. The buried channel is implemented without epitaxial regrowth or accumulation channel implantation. Fabricated MOSFETs subject to ohmic contact rapid thermal annealing at 850 °C for 5 min exhibit a high peak field-effect mobility (μFE) of 95 cm2/V s at room temperature (25 °C) and 255 cm2/V s at 200 °C with stable normally-off operation from 25 °C to 200 °C. The dependence of channel mobility and threshold voltage on the buried channel depth is investigated and the optimum range of channel depth is reported.  相似文献   

14.
Thin film n-channel transistors have been fabricated in polycrystalline silicon films crystallized using hydrogen plasma seeding, by using several processing techniques with 600 to 625°C or 1000°C as the maximum process temperature. The TFTs from hydrogen plasma-treated films with a maximum process temperature of 600°C, have a linear field-effect mobility of ~35 cm2/Vs and an ON/OFF current ratio of ~106, and TFTs with a maximum process temperature of 1000°C, have a linear field-effect mobility of ~100 cm2/Vs and an ON/OFF current ratio of ~107. A hydrogen plasma has also then been applied selectively a in the source and drain regions to seed large crystal grains in the channel. Transistors made with this method with maximum temperature of 600°C showed a nearly twofold improvement in mobility (72 versus 37 cm2 /Vs) over the unseeded devices at short channel lengths. The dominant factor in determining the field-effect mobility in all cases was the grain size of the polycrystalline silicon, and not the gate oxide growth/deposition conditions. Significant increases in mobility are observed when the grain size is in order of the channel length. However the gate oxide plays an important role in determining the subthreshold slope and the leakage current  相似文献   

15.
A remote plasma chemical vapor deposition (RPCVD) of SiO2 was investigated for forming an interface of SiO2/Si at a low temperature below 300°C. A good SiO2/Si interface was formed on Si substrates through decomposition and reaction of SiH4 gas with oxygen radical by confining plasma using mesh plates. The density of interface traps (Dit) was as low as 3.4×1010 cm-2eV-1. N- and p-channel Al-gate poly-Si TFTs were fabricated at 270°C with SiO2 films as a gate oxide formed by RPCVD and laser crystallized poly-crystalline films formed by a pulsed XeCl excimer laser. They showed good characteristics of a low threshold voltage of 1.5 V (n-channel) and -1.5 V (p-channel), and a high carrier mobility of 400 cm2/Vs  相似文献   

16.
The effect of the Si-SiO2 interface microroughness on the electron channel mobility of n-MOSFETs was investigated. The surface microroughness was controlled by changing the mixing ratio of NH4 OH in the NH4OH-H2O2-H2O solution in the RCA cleaning procedure. The gate oxide was etched, following the evaluation of the electrical characteristics of MOS transistors, to measure the microroughness of the Si-SiO2 interface with scanning tunneling microscopy (STM). As the interface microroughness increases, the electron channel mobility, which can be obtained from the current-voltage characteristics of the MOSFET, gets lower. The channel mobility is around 360 cm2/V-s when the average interface microroughness is 0.2 nm, where the substrate impurity concentration is 4.5×1017 cm-3, i.e. the electron bulk mobility is 400 cm2/V-s. It goes down to 100 cm2/V-s when the interface microroughness exceeds 1 nm  相似文献   

17.
High-performance inversion-type enhancement- mode (E-mode) n-channel In0.65Ga0.35As MOSFETs with atomic-layer-deposited Al2O3 as gate dielectric are demonstrated. A 0.4-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 10 nm shows a gate leakage current that is less than 5 times 10-6 A/cm2 at 4.0-V gate bias, a threshold voltage of 0.4 V, a maximum drain current of 1.05 A/mm, and a transconductance of 350 mS/mm at drain voltage of 2.0 V. The maximum drain current and transconductance scale linearly from 40 mum to 0.7 mum. The peak effective mobility is ~1550 cm2/V ldr s at 0.3 MV/cm and decreases to ~650 cm2/V ldr s at 0.9 MV/cm. The obtained maximum drain current and transconductance are all record-high values in 40 years of E-mode III-V MOSFET research.  相似文献   

18.
We have fabricated a high performance polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon-nitride (SiNx ) gate insulator using three stacked layers: very thin laser of hydrogenated amorphous silicon (a-Si:H), SiNx and laser annealed poly-Si. After patterning thin a-Si:H/SiNx layers, gate, and source/drain regions were ion-doped and then Ni layer was deposited. This structure was annealed at 250°C to form a NiSi silicide phase. The low resistive Ni silicides were introduced as gate/source/drain electrodes in order to reduce the process steps. The poly-Si with a grain size of 250 nm and low resistance n+ poly-Si for ohmic contact were introduced to achieve a high performance TFT. The fabricated poly-Si TFT exhibited a field effect mobility of 262 cm2/Vs and a threshold voltage of 1 V  相似文献   

19.
Silicon Carbide (4H-SiC), power UMOSFETs were fabricated and characterized from room temperature to 200°C. The devices had a 12-μm thick lightly doped n-type drift layer, and a nominal channel length of 4 μm. When tested under FluorinertTM at room temperature, blocking voltages ranged from 1.0 kV to 1.2 kV. Effective channel mobility ranged from 1.5 cm2/V.s at room temperature with a gate bias of 32 V (3.5 MV/cm) up to 7 cm2/V.s at 100°C with an applied gate bias of 26 V (2.9 MV/cm). Specific on-resistance (Ron,sp) was calculated to be as low as 74 mΩ.cm2 at 100°C under the same gate bias  相似文献   

20.
Transport properties of ungated Si/Si1-xGex are studied by an ensemble Monte Carlo technique. The device performance is studied with a quantum hydrodynamic equation method using the Monte Carlo results. The phonon-scattering limited mobility is enhanced over bulk Si, and is found to reach 23000 cm2/Vs at 77 K and 4000 cm2/Vs at 300 K. The saturation velocity is increased slightly compared with the bulk value at both temperatures. A significant velocity overshoot, several times larger than the saturation velocity, is also found. In a typical modulation-doped field-effect-transistor, the calculated transconductance for a 0.18 μm gate device is found to be 300 mS/mm at 300 K. Velocity overshoot in the strained Si channel is observed, and is an important contribution to the transconductance. The inclusion of the quantum correction increases the total current by as much as 15%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号