首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper demonstrates a new visual motion estimation technique that is able to recover high degree-of-freedom articulated human body configurations in complex video sequences. We introduce the use and integration of a mathematical technique, the product of exponential maps and twist motions, into a differential motion estimation. This results in solving simple linear systems, and enables us to recover robustly the kinematic degrees-of-freedom in noise and complex self occluded configurations. A new factorization technique lets us also recover the kinematic chain model itself. We are able to track several human walk cycles, several wallaby hop cycles, and two walk cycels of the famous movements of Eadweard Muybridge's motion studies from the last century. To the best of our knowledge, this is the first computer vision based system that is able to process such challenging footage.  相似文献   

2.
This paper introduces the construction of a low-dimensional nonlinear space capturing the variability of a non-rigid shape from a data set of example poses. The core of the approach is a Sparse Principal Geodesic Analysis (SPGA) on the Riemannian manifold of discrete shells, in which a pose of a non-rigid shape is a point. The SPGA is invariant to rigid body motions of the poses and supports large deformation. Since the Riemannian metric measures the membrane and bending distortions of the shells, the sparsity term forces the modes to describe largely decoupled and localized deformations. This property facilitates the analysis of articulated shapes. The modes often represent characteristic articulations of the shape and usually come with a decomposing of the spanned subspace into low-dimensional widely decoupled subspaces. For example, for human models, one expects distinct, localized modes for the bending of elbow or knee whereas some more modes are required to represent shoulder articulation. The decoupling property can be used to construct useful starting points for the computation of the nonlinear deformations via a superposition of shape submanifolds resulting from the decoupling. In a preprocessing stage, samples of the individual subspaces are computed, and, in an online phase, these are interpolated multilinearly. This accelerates the construction of nonlinear deformations and makes the method applicable for interactive applications. The method is compared to alternative approaches and the benefits are demonstrated on different kinds of input data.  相似文献   

3.
石念峰  侯小静  张平 《计算机应用》2017,37(9):2605-2609
为提高运动视频关键帧的运动表达能力和压缩率,提出柔性姿态估计和时空特征嵌入结合的运动视频关键帧提取技术。首先,利用人体动作的时间连续性保持建立具有时间约束限制的柔性部件铰接人体(ST-FMP)模型,通过非确定性人体部位动作连续性约束,采用N-best算法估计单帧图像中的人体姿态参数;接着,采用人体部位的相对位置和运动方向描述人体运动特征,通过拉普拉斯分值法实施数据降维,获得局部拓扑结构表达能力强的判别性人体运动特征向量;最后,采用迭代自组织数据分析技术(ISODATA)算法动态地确定关键帧。在健美操动作视频关键帧提取实验中,ST-FMP模型将柔性混合铰接人体模型(FMP)的非确定性人体部位的识别准确率提高约15个百分点,取得了81%的关键帧提取准确率,优于KFE和运动块的关键帧算法。所提算法对人体运动特征和人体姿态敏感,适用于运动视频批注审阅。  相似文献   

4.
Extracting human representations from video has vast applications. In this paper, we present a knowledge-based framework to capture metarepresentations for real-life video with human walkers. The system models the human body as an articulated object and the human walking as a cyclic activity with highly correlated temporal patterns. We extract for each of the body parts its motion, shape, and texture. Once available, this structural information can be used to manipulate or synthesize the original video sequence, or animate the walker with a different motion in a new synthesized video  相似文献   

5.
A region-based approach to nonrigid motion tracking is described. Shape is defined in terms of a deformable triangular mesh that captures object shape plus a color texture map that captures object appearance. Photometric variations are also modeled. Nonrigid shape registration and motion tracking are achieved by posing the problem as an energy-based, robust minimization procedure. The approach provides robustness to occlusions, wrinkles, shadows, and specular highlights. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PCs, and game consoles. This enables nonrigid tracking at speeds approaching video rate.  相似文献   

6.
Automatic acquisition and initialization of articulated models   总被引:3,自引:0,他引:3  
Tracking, classification and visual analysis of articulated motion is challenging because of the difficulties involved in separating noise and variabilities caused by appearance, size and viewpoint fluctuations from task-relevant variations. By incorporating powerful domain knowledge, model-based approaches are able to overcome these problem to a great extent and are actively explored by many researchers. However, model acquisition, initialization and adaptation are still relatively under-investigated problems, especially for the case of single-camera systems. In this paper, we address the problem of automatic acquisition and initialization of articulated models from monocular video without any prior knowledge of shape and kinematic structure. The framework is applied in a human-computer interaction context where articulated shape models have to be acquired from unknown users for subsequent limb tracking. Bayesian motion segmentation is used to extract and initialize articulated models from visual data. Image sequences are decomposed into rigid components that can undergo parametric motion. The relative motion of these components is used to obtain joint information. The resulting components are assembled into an articulated kinematic model which is then used for visual tracking, eliminating the need for manual initialization or adaptation. The efficacy of the method is demonstrated on synthetic as well as natural image sequences. The accuracy of the joint estimation stage is verified on ground truth data.Correspondence to: N. Krahnstoever  相似文献   

7.
Several non-rigid structure from motion methods have been proposed so far in order to recover both the motion and the non-rigid structure of an object. However, these monocular algorithms fail to give reliable 3D shape estimates when the overall rigid motion of the sequence is small. Aiming to overcome this limitation, in this paper we propose a novel approach for the 3D Euclidean reconstruction of deformable objects observed by an uncalibrated stereo rig. Using a stereo setup drastically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach is based on the following steps. Firstly, the stereo system is automatically calibrated and used to compute metric rigid structures from pairs of views. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points which have remained rigid throughout the sequence. The selected rigid points are then used to compute frame-wise shape registration and to robustly extract the motion parameters from frame to frame. Finally, all this information is used as initial estimates of a non-linear optimization which allows us to refine the initial solution and also to recover the non-rigid 3D model. Exhaustive results on synthetic and real data prove the performance of our proposal estimating motion, non-rigid models and stereo camera parameters even when there is no rigid motion in the original sequence.  相似文献   

8.
Existing approaches to recover structure of 3D deformable objects and camera motion parameters from an uncalibrated images assume the object’s shape could be modelled well by a linear subspace. These methods have been proven effective and well suited when the deformations are relatively small, but fail to reconstruct the objects with relatively large deformations. This paper describes a novel approach for 3D non-rigid shape reconstruction, based on manifold decision forest technique. The use of this technique can be justified by noting that a specific type of shape variations might be governed by only a small number of parameters, and therefore can be well represented in a low-dimensional manifold. The key contributions of this work are the use of random decision forests for the shape manifold learning and robust metric for calculation of the re-projection error. The learned manifold defines constraints imposed on the reconstructed shapes. Due to a nonlinear structure of the learned manifold, this approach is more suitable to deal with large and complex object deformations when compared to the linear constraints. The robust metric is applied to reduce the effect of measurement outliers on the quality of the reconstruction. In many practical applications outliers cannot be completely removed and therefore the use of robust techniques is of particular practical interest. The proposed method is validated on 2D points sequences projected from the 3D motion capture data for ground truth comparison and also on real 2D video sequences. Experiments show that the newly proposed method provides better performance compared to previously proposed ones, including the robustness with respect to measurement noise, missing measurements and outliers present in the data.  相似文献   

9.
Articulated soft objects for multiview shape and motion capture   总被引:6,自引:0,他引:6  
We develop a framework for 3D shape and motion recovery of articulated deformable objects. We propose a formalism that incorporates the use of implicit surfaces into earlier robotics approaches that were designed to handle articulated structures. We demonstrate its effectiveness for human body modeling from synchronized video sequences. Our method is both robust and generic. It could easily be applied to other shape and motion recovery problems.  相似文献   

10.
This paper describes methods for recovering time-varying shape and motion of non-rigid 3D objects from uncalibrated 2D point tracks. For example, given a video recording of a talking person, we would like to estimate the 3D shape of the face at each instant, and learn a model of facial deformation. Time-varying shape is modeled as a rigid transformation combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed, and thus additional assumptions about deformations are required. We first suggest restricting shapes to lie within a low-dimensional subspace, and describe estimation algorithms. However, this restriction alone is insufficient to constrain reconstruction. To address these problems, we propose a reconstruction method using a Probabilistic Principal Components Analysis (PPCA) shape model, and an estimation algorithm that simultaneously estimates 3D shape and motion for each instant, learns the PPCA model parameters, and robustly fills-in missing data points. We then extend the model to model temporal dynamics in object shape, allowing the algorithm to robustly handle severe cases of missing data.  相似文献   

11.
Automatic estimation of skinning transformations is a popular way to deform a single reference shape into a new pose by providing a small number of control parameters. We generalize this approach by efficiently enabling the use of multiple exemplar shapes. Using a small set of representative natural poses, we propose to express an unseen appearance by a low-dimensional linear subspace, specified by a redundant dictionary of weighted vertex positions. Minimizing a nonlinear functional that regulates the example manifold, the suggested approach supports local-rigid deformations of articulated objects, as well as nearly isometric embeddings of smooth shapes. A real-time nonrigid deformation system is demonstrated, and a shape completion and partial registration framework is introduced. These applications can recover a target pose and implicit inverse kinematics from a small number of examples and just a few vertex positions. The resulting reconstruction is more accurate compared to alternative reduced deformable models.  相似文献   

12.
In this article we propose a new method for accurate nonrigid motion analysis when point correspondence data is not available. Nonlinear finite element models are constructed by integrating range data and prior knowledge about an object's properties. The motion sequence is recovered given an initial alignment of the model with the first frame of the sequence. The main idea of the method is to find the forces that are responsible for the motion or shape deformation of the given object. The task is broken into subtasks of finding the forces for each frame. Both absolute values and directions of these forces are taken into consideration and iteratively varied not only for each frame, but also between the frames. Experimental results demonstrate the success of the proposed algorithm. The method is applied to man-made elastic materials and human hand modeling. It allows for recovery of single and multiple forces using restricted (elastic-articulated) and completely unrestricted (elastic) models. Our work demonstrates the possibility of accurate nonrigid motion analysis and force recovery from range image sequences containing nonrigid objects and large motion without interframe point correspondences.  相似文献   

13.
An approach based on fuzzy logic for matching both articulated and non-articulated objects across multiple non-overlapping field of views (FoVs) from multiple cameras is proposed. We call it fuzzy logic matching algorithm (FLMA). The approach uses the information of object motion, shape and camera topology for matching objects across camera views. The motion and shape information of targets are obtained by tracking them using a combination of ConDensation and CAMShift tracking algorithms. The information of camera topology is obtained and used by calculating the projective transformation of each view with the common ground plane. The algorithm is suitable for tracking non-rigid objects with both linear and non-linear motion. We show videos of tracking objects across multiple cameras based on FLMA. From our experiments, the system is able to correctly match the targets across views with a high accuracy.  相似文献   

14.
Recently, subspace constraints have been widely exploited in many computer vision problems such as multibody grouping. Under linear projection models, feature points associated with multiple bodies reside in multiple subspaces. Most existing factorization-based algorithms can segment objects undergoing independent motions. However, intersections among the correlated motion subspaces will lead most previous factorization-based algorithms to erroneous segmentation. To overcome this limitation, in this paper, we formulate the problem of multibody grouping as inference of multiple subspaces from a high-dimensional data space. A novel and robust algorithm is proposed to capture the configuration of the multiple subspace structure and to find the segmentation of objects by clustering the feature points into these inferred subspaces, no matter whether they are independent or correlated. In the proposed method, an oriented-frame (OF), which is a multidimensional coordinate frame, is associated with each data point indicating the point's preferred subspace configuration. Based on the similarity between the subspaces, novel mechanisms of subspace evolution and voting are developed. By filtering the outliers due to their structural incompatibility, the subspace configurations will emerge. Compared with most existing factorization-based algorithms that cannot correctly segment correlated motions, such as motions of articulated objects, the proposed method has a robust performance in both independent and correlated motion segmentation. A number of controlled and real experiments show the effectiveness of the proposed method. However, the current approach does not deal with transparent motions and motion subspaces of different dimensions.  相似文献   

15.
Analyzing and capturing articulated hand motion in image sequences   总被引:2,自引:0,他引:2  
Capturing the human hand motion from video involves the estimation of the rigid global hand pose as well as the nonrigid finger articulation. The complexity induced by the high degrees of freedom of the articulated hand challenges many visual tracking techniques. For example, the particle filtering technique is plagued by the demanding requirement of a huge number of particles and the phenomenon of particle degeneracy. This paper presents a novel approach to tracking the articulated hand in video by learning and integrating natural hand motion priors. To cope with the finger articulation, this paper proposes a powerful sequential Monte Carlo tracking algorithm based on importance sampling techniques, where the importance function is based on an initial manifold model of the articulation configuration space learned from motion-captured data. In addition, this paper presents a divide-and-conquer strategy that decouples the hand poses and finger articulations and integrates them in an iterative framework to reduce the complexity of the problem. Our experiments show that this approach is effective and efficient for tracking the articulated hand. This approach can be extended to track other articulated targets.  相似文献   

16.
We present an algorithm called Procrustes-Lo-RANSAC (PLR) to recover complete 3D models of articulated objects. Structure-from-motion techniques are used to capture 3D point cloud models of an object in two different configurations. Procrustes analysis, combined with a locally optimized RANSAC sampling strategy, facilitates a straightforward geometric approach to recovering the joint axes, as well as classifying them automatically as either revolute or prismatic. With the resulting articulated model, a robotic system is then able to manipulate the object along its joint axes at a specified grasp point in order to exercise its degrees of freedom. Because the models capture all sides of the object, they are occlusion-aware, meaning that the robot has knowledge of parts of the object that are not visible in the current view. Our algorithm does not require prior knowledge of the object, nor does it make any assumptions about the planarity of the object or scene. Experiments with a PUMA 500 robotic arm demonstrate the effectiveness of the approach on a variety of real-world objects containing both revolute and prismatic joints.  相似文献   

17.
A physics-based framework for 3-D shape and nonrigid motion estimation for real-time computer vision systems is presented. The framework features dynamic models that incorporate the mechanical principles of rigid and nonrigid bodies into conventional geometric primitives. Through the efficient numerical simulation of Lagrange equations of motion, the models can synthesize physically correct behaviors in response to applied forces and imposed constraints. Applying continuous Kalman filtering theory, a recursive shape and motion estimator that employs the Lagrange equations as a system model is developed. The system model continually synthesizes nonrigid motion in response to generalized forces that arise from the inconsistency between the incoming observations and the estimated model state. The observation forces also account formally for instantaneous uncertainties and incomplete information. A Riccati procedure updates a covariance matrix that transforms the forces in accordance with the system dynamics and prior observation history. Experiments involving model fitting and tracking of articulated and flexible objects from noisy 3-D data are described  相似文献   

18.
Dynamic human shape in video contains rich perceptual information, such as the body posture, identity, and even the emotional state of a person. Human locomotion activities, such as walking and running, have familiar spatiotemporal patterns that can easily be detected in arbitrary views. We present a framework for detecting shape outliers for human locomotion using a dynamic shape model that factorizes the body posture, the viewpoint, and the individual’s shape style. The model uses a common embedding of the kinematic manifold of the motion and factorizes the shape variability with respect to different viewpoints and shape styles in the space of the coefficients of the nonlinear mapping functions that are used to generate the shapes from the kinematic manifold representation. Given a corrupted input silhouette, an iterative procedure is used to recover the body posture, viewpoint, and shape style. We use the proposed outlier detection approach to fill in the holes in the input silhouettes, and detect carried objects, shadows, and abnormal motions.  相似文献   

19.
In this paper, we propose an online motion capture marker labeling approach for multiple interacting articulated targets. Given hundreds of unlabeled motion capture markers from multiple articulated targets that are interacting each other, our approach automatically labels these markers frame by frame, by fitting rigid bodies and exploiting trained structure and motion models. Advantages of our approach include: 1) our method is an online algorithm, which requires no user interaction once the algorithm starts. 2) Our method is more robust than traditional the closest point-based approaches by automatically imposing the structure and motion models. 3) Due to the use of the structure model which encodes the rigidity of each articulated body of captured targets, our method can recover missing markers robustly. Our approach is efficient and particularly suited for online computer animation and video game applications.  相似文献   

20.
Dynamic analysis of video sequences often relies on the segmentation of the sequence into regions of consistent motions. Approaching this problem requires a definition of which motions are regarded as consistent. Common approaches to motion segmentation usually group together points or image regions that have the same motion between successive frames (where the same motion can be 2D, 3D, or non-rigid). In this paper we define a new type of motion consistency, which is based on temporal consistency of behaviors across multiple frames in the video sequence. Our definition of consistent “temporal behavior” is expressed in terms of multi-frame linear subspace constraints. This definition applies to 2D, 3D, and some non-rigid motions without requiring prior model selection. We further show that our definition of motion consistency extends to data with directional uncertainty, thus leading to a dense segmentation of the entire image. Such segmentation is obtained by applying the new motion consistency constraints directly to covariance-weighted image brightness measurements. This is done without requiring prior correspondence estimation nor feature tracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号