首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

2.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

3.
(1− x )(Na0.5K0.5)NbO3– x AgSbO3 lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AgSbO3 on the phase structure and piezoelectric properties of the ceramics were systematically studied. These results show that the AgSbO3-modified (K0.50Na0.50)NbO3 lead-free piezoelectric ceramics form stable solution with orthorhombic structure, and the Curie temperature and the polymorphic phase transition of the ceramics decreased with increasing AgSbO3. The result shows that the piezoelectric properties of the ceramics strongly depend on the AgSbO3. The ceramics with x =0.05 possess optimum properties ( d 33=192 pC/N, k p=43%, T c=348°C, T o−t =145°C, ɛr∼632, and tan δ∼3.5%). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

4.
As a candidate for lead-free piezoelectric materials, Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 (NKN–5LT) ceramics were developed by a conventional sintering process. The sintering temperature was lowered by adding Li2O as a sintering aid. Abnormal grain growth in NKN–5LT ceramics was observed with varying Li2O content. This grain-growth behavior was explained in terms of interface reaction-controlled nucleation and growth. In the 1 mol% Li2O excess NKN–5LT samples sintered at 1000°C for 4 h in air, the electromechanical coupling factor and the piezoelectric constant of NKN–5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.  相似文献   

5.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

6.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

7.
(1− x )(K0.48Na0.52)(Nb0.95Ta0.05)O3– x LiSbO3 [(1− x )KNNT− x LS] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was identified in the composition range of 0.03< x <0.05. The ceramics near the MPB exhibit a strong compositional dependence and enhanced electrical properties. The (1− x )KNNT– x LS ( x =0.04) ceramics exhibit good electrical properties ( d 33=250 pC/N, k p=45.1%, k t =46.3%, T c=348°C, T o − t =74°C, P r=25.9 μC/cm2, E c=10.7 kV/cm, ɛr∼1352, tan δ∼3%). These results show that (1− x )KNNT– x LS ceramic is a promising lead-free piezoelectric material.  相似文献   

8.
Lead-free piezoelectric Na x K1− x NbO3 ( x =20–80 mol%) ceramics were fabricated using spark plasma sintering at a low temperature (920°C). All the Na x K1− x NbO3 ceramics showed a similar orthorhombic phase structure, while the corresponding lattice parameters decreased from the KNbO3 side to the NaNbO3 side with increasing Na content. A discontinuous change in lattice parameter close to composition of 60 mol% Na indicated the presence of a transitional area that is similar to the morphotropic phase boundary (MPB) in Na x K1− x NbO3 ceramics. The sintered density of the Na x K1− x NbO3 ceramics decreased with increasing Na content, from a relative density of 99% for the K-rich side to 92% for the Na-rich side. The piezoelectric constant d 33 and planar mode electromechanical coupling coefficient k p showed a maximum value of 148 pC/N and 38.9%, respectively, due to the similar MPB effects in the PZT system.  相似文献   

9.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− y )(Na0.5−0.5 x K0.5−0.5 x Li x )NbO3− y BiScO3 (  y =0.01, x= 0–0.06) have been prepared by an ordinary sintering process. The XRD analysis showed that the structure changes from orthorhombic to tetragonal with the increase of x (at y =0.01, abbreviated as KNNBSL100 x ). At room temperature, the polymorphic phase transition from the orthorhombic to the tetragonal phase was identified at approximately 0.02≤ x ≤0.04. The piezoelectric and ferroelectric properties were significantly enhanced. The temperature dependences of the relative permittivity revealed that the Curie temperature was increased with the addition of LiNbO3. These solid solution ceramics are promising as potential lead-free candidate materials.  相似文献   

10.
Lead-free (Na0.52K0.48− x )(Nb1− x − y Sb y )O3- x LiTaO3 (NKNS–LT) piezoelectric ceramics have been fabricated by ordinary sintering. A special attention was paid to the composition design through which the dielectric and piezoelectric properties of the (Li, Ta, Sb) modified NKN systems were significantly promoted. A property spectrum was generated with a particular discussion on the relationship between the Sb content, the LT content, the polymorphic phase transition, and the electrical properties and their temperature stability. Excellent and tunable electrical properties of d 33=242–400 pC/N, k p=36%–54%,     , and T c=230°–430°C demonstrate a tremendous potential of the compositions studied for device applications.  相似文献   

11.
Lead-free piezoelectric ceramics have received attention because of increasing interest in environmental protection. Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics were prepared using spark plasma sintering (SPS). Although the SPS temperature was as low as 920°C, the density of the Na0.5K0.5NbO3 solid solution ceramics was raised to 4.47 g/cm3 (>99% of the theoretical density). After post-annealing in air, reasonably good ferroelectric and piezoelectric properties were obtained in the Na0.5K0.5NbO3 ceramics with submicron grains. The crystal phase of the Na0.5K0.5NbO3 has an orthorhombic structure. The Curie temperature is 395°C and the piezoelectric parameter ( d 33) of the Na0.5K0.5NbO3 ceramics reached 148 pC/N.  相似文献   

12.
Lead-free (K0.44Na0.52Li0.04) (Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics were prepared by the conventional solid-state sintering method. The grain growth of the ceramics was inhibited and the relative density was improved with Ta substituting for Nb. Increasing x led to different variations of dielectric properties before and after poling, and prevented the occurrence of orthorhombic–tetragonal phase transition (at T o − t ). All the ceramics show an intermediate relaxor-like behavior between normal and ideal relaxor ferroelectrics. Significantly enhanced dielectric and piezoelectric properties were obtained in the ceramics with x =0.20. The ceramics are very promising lead-free materials for electromechanical device applications.  相似文献   

13.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

14.
Ceramics with the chemical compositions of Pb1− x La2 x /3(Nb0.95Ti0.0625)2O6 (0≤ x ≤0.060) (PLTN) were prepared by the conventional solid-state reaction method. X-ray diffraction analysis indicated that Ti and La doping not only decreased the rhombohedral–tetragonal phase transformation temperature, but also stabilized the orthorhombic phase of PLTN ceramics. All ceramics sintered at 1190°–1250°C had shown the pure orthorhombic ferroelectric phase. La doping suppresses grain growth and inhibits the formation of pores and cracks, resulting in an increase in relative density up to 97%. The amount of La doping to PLTN ceramics obviously affect ceramics' piezoelectric constant ( d 33) and dielectric loss (tanδ). The sample with x =0.015 possesses high Curie temperature ( T c=560°C), low dielectric loss (tanδ=0.0054), and excellent piezoelectric constant ( d 33=92 pC/N), presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

15.
Mn-doped 0.98K0.5Na0.5NbO3–0.02BiScO3 (0.98KNN–0.02BS) lead-free piezoelectric ceramics have been prepared by a conventional sintering technique and the effects of Mn doping on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of Mn can improve the densification of the ceramics effectively. Because of the high densification, fine grain, and Mn doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. Very good piezoelectric and dielectric properties of d 33=288 pC/N, k p=0.46, ɛr=1591, and T C=328°C were obtained for the 0.98KNN–0.02BS ceramics doped with 0.8 mol% Mn. Therefore, the 0.98KNN–0.02BS ceramics containing a small amount of Mn are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

16.
The sintering and electrical characteristics of La-modified Na1/2Bi1/2TiO3 (NBT) was investigated from a defect structure viewpoint. To reveal the role of cation vacancies, two series of ceramics, with different cation vacancies, were processed to compensate the excess positive charge of lanthanum ions. In a region of complete solid solution, the grain size of NBLT-B {[(Na0.5Bi0.5)1− x La x ]Ti1−0.25 x O3} was smaller than that of NBLT-A {[(Na0.5Bi0.5)1−1.5 x La x ]TiO3} and densification was enhanced more effectively in NBLT-B. With the aid of thermoelectric power, electric conductivity, and electrotransport measurements, it was found that different sintering behaviors between NBLT-A and NBLT-B specimens were related to the change in the type of cation vacancies present and that lanthanum ion–cation vacancy pairs played an important role in reducing the grain growth and enhancing the densification process.  相似文献   

17.
Piezoelectric ceramics Na1− x Ba x Nb1− x Ti x O3 with low BaTiO3 concentrations x have been prepared by the solid-state reaction method, and their ferroelectric and piezoelectric properties have been studied. The ceramics are classic ferroelectrics when x ≤0.10, and the ferroelectric–paraelectric phase transition becomes diffusive when x ≥0.15. A low doping level of BaTiO3 changes the NaNbO3 ceramics from antiferroelectric to ferroelectric. With the increase in BaTiO3 doping level, the Curie temperature of ceramics decreases linearly and the remnant polarization and coercive field also decrease, while their dielectric constant increases. Na0.9Ba0.1Nb0.9Ti0.1O3 ceramics show the largest piezoelectric constant d 33 (147 pC/N) and good sinterability, suggesting that it is a good candidate for lead-free piezoelectric ceramics.  相似文献   

18.
Porosity, grain growth, phase composition, and microstructural defects were studied in sintered YBa2 (Cu1−x)3O7−x ceramics for x values up to 0.3. The porosity of the samples, related to the sintering mechanism, was independent of iron concentration. A linear dependence of the grain size with the inverse of the iron concentration was found, strongly suggesting grain boundary segregation of iron. The solubility limit was estimated to be x = 0.18 at 950°C in O2. Beyond this limit, a new microstructural component was found consisting of YBa2(Cu1−xFex)3O7−δ, YBaCuFeO5 and Ba(Cu,Fe)O2. The transition from an orthorhombic twin to an orthorhombic tweed phase and a tetragonal phase was detected by polarized light microscopy.  相似文献   

19.
When a small amount of CuO was added to (Na0.5K0.5)NbO3 (NKN) ceramics sintered at 960°C for 2 h, a dense microstructure with increased grains was developed, probably due to liquid-phase sintering. The Curie temperature slightly increased when CuO exceeded 1.5 mol%. The Cu2+ ion was considered to have replaced the Nb5+ ion and acted as a hardener, which increased the E c and Q m values of the NKN ceramics. High piezoelectric properties of k p=0.37, Q m=844, and ɛ3 T 0=229 were obtained from the specimen containing 1.5 mol% of CuO sintered at 960°C for 2 h.  相似文献   

20.
Microstructural characterizations using transmission electron microscopy on 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics sintered at 1030°–1150°C for 2 h were carried out. The liquid phase was found at the triple junction of the grains in all specimens and abnormal grain growth occurred in the presence of the liquid phase. Abnormally grown grains whose shapes were cuboidal were well developed. Anisotropically faceted amorphous liquid phase pockets were observed inside the grain in a specimen sintered at 1060°C for 2 h. The interface between the grain and the liquid matrix was flat and some were identified to be {100} planes of the grains. A certain amount of liquid at the sintering temperature of 1060°C enhanced the abnormal grain growth and contributed to the improvement of the piezoelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号