首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高愿军  张永峰  许光日 《食品科学》2010,31(16):233-236
利用电化学聚合法制备3- 噻吩丙二酸(3-TPA)修饰玻碳电极。利用循环伏安法研究苏丹红在3-TPA 修饰玻碳电极上的电化学行为,得出预富集时间、pH 值、扫描速率及扫描范围因素对该修饰电极检测苏丹红的影响。在最佳条件下,利用差分脉冲伏安法得出在2.0 × 10-5~1.3 × 10-3mol/L 浓度范围内苏丹红Ⅰ响应电流与其浓度对数呈良好的线性关系,相关系数r=0.996,检测限为4.8 × 10-6mol/L。辣椒粉、辣椒酱加标回收率分别为99.9% 和99.4%,相对标准偏差(n=3)分别为0.25% 和0.21%。另外,对苏丹红Ⅰ氧化还原机理进行了初步的探讨。  相似文献   

2.
《食品与发酵工业》2014,(3):187-191
利用循环伏安法在0.5 mol/L H2SO4溶液中制备了活化玻碳电极并对苏丹红Ⅰ在该电极上的电化学行为进行了研究。结果表明:活化玻碳电极对苏丹红Ⅰ的电化学氧化具有明显的催化作用。利用此催化性能,建立了一种新的测定苏丹红Ⅰ的电化学方法。在pH=4.0磷酸盐缓冲溶液中,对检测条件进行了优化,利用差分脉冲伏安法进行测定,苏丹红Ⅰ在活化玻碳电极上的氧化峰峰电流与其浓度在4.00×10-81.00×10-5mol/L内呈良好线性关系;相关系数为0.998 9;检出限为9.00×10-9mol/L。其回归方程为:ipa(A)=0.70c+5.91×10-7。该电极具有良好的灵敏性、选择性和稳定性,可用于食品中苏丹红Ⅰ的检测。  相似文献   

3.
罗宿星  伍远辉  朱敏  郭美 《中国酿造》2012,31(4):165-168
制备了多壁碳纳米管/磷钨酸复合膜修饰电极,研究了该修饰电极对苏丹红Ⅳ的电催化作用,考察了富集电位、富集时间、脉冲宽度、脉冲振幅和支持电解质等因素对苏丹红Ⅳ响应的影响。在优化实验条件下,苏丹红Ⅳ浓度为1×10-6mol/L~4×10-5mol/L范围内,差分脉冲伏安峰电流与苏丹红Ⅳ的浓度呈现良好的线性关系,相关系数R=0.995,检出限为8×10-7mol/L。共存的多种离子、β-胡萝卜素等不干扰测定。  相似文献   

4.
习霞  明亮 《中国调味品》2012,37(4):100-102
以多壁碳纳米管(MWCNT)修饰玻碳电极为工作电极,研究了碘离子在该修饰电极上的伏安分析特性,建立了测定食盐中碘含量的线性扫描伏安法。在优化实验条件下,氧化峰电流与碘离子浓度在1.0×10-6~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为4.0×10-7 mol/L。对1.0×10-4 mol/L碘化钾溶液平行测定10次的RSD为3.2%。将该方法用于测定加碘食盐中的碘含量,结果满意。  相似文献   

5.
构建了二氧化钛纳米管和纳米金复合修饰玻碳电极(TiNTs-AuNPs/GCE),研究了亚硝酸盐在该修饰电极上的伏安分析特性,据此建立了测定腌菜中亚硝酸盐含量的线性扫描伏安法。优化了分析介质以及修饰剂用量等测定条件。在优化实验条件下,亚硝酸盐的氧化峰电流与其浓度在3.0×10-7~2.0×10-4 mol/L区间内线性关系良好,检出限为1.0×10-7 mol/L(S/N=3)。运用该法测定了腌菜中的亚硝酸盐含量,平均回收率在96.8%~104.3%之间,结果令人满意。  相似文献   

6.
张秋灵  邹华  常文贵 《饮料工业》2007,10(11):33-36,40
对聚中性红修饰电极的制备方法进行了研究,通过循环伏安法(CV)找到了制备电极的最佳实验条件.研究了VC在聚中性红修饰电极的电化学行为,发现聚中性修饰电极对Vc有良好的伏安响应,在100mV/s的扫速下,VC在该修饰电极上产生一对准可逆氧化还原峰,峰电流与VC浓度在1.0×10-5~1.0×10-2mol/L范围内有良好的线性关系,检出限可达到1.0×10-6mol/L.与紫外光谱法作比较,该实验方法具有可行性.  相似文献   

7.
王玲  秦会安  侯婷婷  李倩 《食品工业科技》2018,39(12):267-270,283
采用滴涂和电聚合的方法构筑Nafion-聚半胱氨酸修饰的玻碳电极(Nafion/L-cys/GCE),采用循环伏安法(CV)研究色氨酸在此修饰电极上的电化学行为,利用线性扫描伏安法(LSV)对色氨酸进行定量分析。结果表明,该修饰电极对色氨酸电化学氧化具有明显催化作用。色氨酸浓度在0.4×10-6~40.0×10-6mol/L范围内与氧化峰电流有良好线性关系,回归方程为Ipa(μA)=0.6997c(10-6mol/L)+5.3(R2=0.9844),检测限为1.0×10-7 mol/L。该方法用于香蕉中色氨酸的检测,回收率为95%~98%。  相似文献   

8.
在乙醇介质中,λex/λem=280/495 nm由于强荧光染料吖啶黄的荧光与苏丹红I的吸收光的等色性,苏丹红I能够有效吸收吖啶黄发出的荧光,使其荧光猝灭,依此建立荧光测定苏丹红I的新方法,该方法快速简便其线性范围为:1.5×10-6mol/L~3.510-5mol/L.用于辣椒、辣椒酱食品中痕量苏丹红I的测定,相对标准偏差为:0.8%~2.7%.回收率为:89.5%~109.0%,方法检出限为:6.4×10-7mol/L.  相似文献   

9.
马超越  展海军  赵亚 《食品科技》2011,(4):266-268,275
制备了以电子媒介体聚中性红固定辣根过氧化物酶(HRP)的生物传感器,采用循环伏安法对该传感器的性能进行了研究。结果表明,辣根过氧化物酶在该电极上实现了稳定的直接电子转移反应,传感器在H2O2浓度为3.18×10-8~3.18×10-3mol/L的范围内具有良好的线性相关性,检出限为6.36×10-9mol/L。应用于啤酒中H2O2的测定,回收率为88.5%~98.6%。  相似文献   

10.
在玻碳电极表面电化学还原氧化石墨烯制备石墨烯修饰电极,通过优化支持电解质及pH值、修饰剂用量、富集电位及时间等测定条件,建立了基于该电极测定酱油中铅含量的线性扫描阳极溶出伏安分析法.在pH 4.5的NaAc-HAc缓冲液中,-1.10 V富集5 min后,pb2+的浓度在1.0×10-8 ~4.0×10-5 mol/L区间内与溶出峰电流呈线性,检出限为3.0×10-9 mol/L.对5.0×10-6 mol/L Pb2+溶液平行测定10次的RSD为2.6%.将该方法用于酱油中铅含量的测定,平均回收率在95.8%~104.6%之间,结果满意.  相似文献   

11.
《食品与发酵工业》2019,(20):262-266
采用循环伏安法制备聚γ-氨基丁酸修饰电极,并对聚合条件进行了优化,以建立测定食品中莱克多巴胺含量的电化学分析方法。用循环伏安或差分脉冲法探讨了莱克多巴胺在聚γ-氨基丁酸修饰电极上的电化学行为。结果表明,莱克多巴胺的氧化峰电流与其浓度在6. 0×10-8~1. 0×10-5mol/L范围线性关系良好,R2=0. 998 8。检出限为8. 0×10-9mol/L。回收率为98. 0%~102%,RSD为2. 3%~3. 1%。循环伏安法简单、快速、灵敏,为莱克多巴胺的测定提供了新方法,为食品控制提供了依据。  相似文献   

12.
研制金钯合金纳米粒子修饰的特异性定量检测食品中过氧化氢残留量的过氧化氢传感器。以比表面积大、生物相容性好、具有优良电催化性能的金钯合金纳米粒子固定辣根过氧化物酶于玻碳电极,制得过氧化氢传感器电极。通过循环伏安法及交流阻抗法表征电极在组装过程中的电化学特性,利用计时电流法对传感器性能进行考察。研究表明:该传感器测定H2O2的线性范围为1×10-7~5×10-3mol/L,检测限为8.0×10-7 mol/L,对H2O2具有较好的催化还原活性和良好的检出性能。该传感器制作简单、成本低廉、可重复性强,可用于快速定量检测食品中过氧化氢残留量。  相似文献   

13.
目的制备基于纳米金-壳聚糖/多壁碳纳米管修饰的玻碳电极,用于检测水样中微量的孔雀石绿。方法实验利用电沉积法首先在玻碳电极表面沉积金纳米颗粒,然后利用溶剂蒸发法在纳米金层表面再修饰混有壳聚糖的羧基化多壁碳纳米管。实验设计以多壁碳纳米管/纳米金共修饰的玻碳电极作为电化学传感元件,采用循环伏安法(CV)和微分脉冲伏安法(DPV)检测MG。结果表明电极的修饰膜可加速MG的电子传递速率,促进电位变化,并显著增强MG的氧化峰电流。得到的差分脉冲峰电流与孔雀石绿浓度对数值在2.5×10-9~2.5×10-4 mol/L范围内呈良好线性关系,检测限为9.3×10-10 mol/L。结论本研究制备的基于纳米金-壳聚糖/多壁碳纳米管修饰玻碳电极的电化学传感器适于孔雀石绿的快速、灵敏检测。  相似文献   

14.
聚吡咯修饰铂电极快速测定植物油中维生素E的研究   总被引:1,自引:0,他引:1  
采用恒电位聚合的方法,在0.9V(vs.Ag/AgCl)电位下,修饰铂电极使其表面形成对苯磺酸掺杂聚吡咯薄膜.通过循环伏安法扫描发现,在0.696V处维生索E在该修饰电极表面形成一个明显的氧化峰.利用微分脉冲伏安技术作为检测方法,在最佳实验条件下,维生素E的氧化峰电流与其浓度在6×10-6~3×10-3 mol/L范围内呈良好的线性关系,相关系数为0.9963,最低检出限为2×10-6 mol/L(S/N=3).应用该电极可以简便、准确、快速测定植物油中维生素E含量.  相似文献   

15.
制备石墨烯修饰电极建立电化学方法实现对抗坏血酸的测定。采用电化学还原技术,通过一步电沉积制备石墨烯修饰玻碳电极(ERGO/GCE),并用循环伏安法研究抗坏血酸(ascorbicacid,AA)在该修饰电极上的电化学行为,结果表明,所制备的石墨烯修饰电极较裸玻碳电极对抗坏血酸有显著的电催化效果。在p H=6.5的磷酸盐缓冲溶液中,AA在-0.4 V~0.8 V扫描电位范围内有1个不可逆的氧化峰出现。在优化的实验条件下,AA的浓度在1.7×10-3 mol/L~2×10-5 mol/L范围内与其氧化峰电流值呈良好的线性关系,相关系数为0.991,最低检出限为9×10-6mol/L(S/N=3)。探究了修饰电极的稳定性、抗干扰性,结果表明电极稳定性良好,抗干扰能力较强。用此修饰电极对橙汁中的AA含量进行检测,加标回收率在97.95%~98.68%之间。用本文建立的电化学方法可用于橙汁中AA的测定,结果比较满意。  相似文献   

16.
利用电化学沉淀普鲁士蓝纳米粒子在石墨烯的表面,采用差分脉冲伏安法对该电极进行表征,并研究亚硝酸根离子在修饰电极上的电化学行为。结果表明:在0.10 mol/L磷酸盐缓冲液(pH 7.0)中,亚硝酸根在1×10-6~1×10-2 mol/L浓度范围内呈线性关系,信噪比为3时检出限为3×10-8 mol/L。所构建的普鲁士蓝/石墨烯修饰电极对亚硝酸根离子具有良好的电催化活性,表现出良好的稳定性、重复性和抗干扰能力,同时将所构建的复合材料修饰电极应用于酱油中亚硝酸盐的检测。  相似文献   

17.
张春娥  薛文通  王玮  张惠 《食品科技》2011,(2):273-276,279
采用已发明的用于植物油酸价检测的聚吡咯膜修饰电极测定植物油中亚油酸浓度。采用循环伏安法(CV)在乙腈溶液中聚合吡咯单体于铂电极表面制备化学修饰电极Ppy/ClO4-/Pt,用线性伏安法(LV)检测亚油酸浓度。通过修饰电极与裸电极表面上发生反应时的响应峰电流比较,可以发现修饰电极上的氧化还原反应转移步骤的动力学较快,且反应所需的电位较低,在较低浓度亚油酸存在下反应也可进行。结果表明:在浓度为9.6×10-6~1.28×10-3 mol/L之间,峰电流与亚油酸浓度呈现良好的线性关系,相关系数(R2)是0.9922,检出限为3.0×10-6 mol/L(S/N=3),灵敏度为0.495。并且将该化学修饰电极用于植物油(芝麻油、玉米油、花生油和大豆油)中游离脂肪酸浓度的检测。  相似文献   

18.
线性扫描极谱法测定辣椒粉中的苏丹红Ⅳ   总被引:1,自引:0,他引:1  
在BR缓冲溶液(pH 7.50)中,用线性扫描极谱法研究苏丹红Ⅳ的电化学行为,其在-0.935 V(vs.SCE)处有一个灵敏的极谱还原波,二阶导数峰电流与苏丹红Ⅳ浓度在4.00×10-7~8.50×10-6 mol/L范围内呈线性关系,相关系数为0.998 4,检出限为2.44×10-7 mol/L.此法用于辣椒粉中微量苏丹红Ⅳ的测定,其回收率在93.26%~104.53%.  相似文献   

19.
通过电化学还原法制备纳米Cu2O/还原石墨烯复合修饰电极(Cu2O-reduced graphene oxide nanocomposite modified glass carbon electrode,Cu2O-RGO/GCE),用于多巴胺(dopamine,DA)的检测。采用扫描电镜和X-射线粉末衍射仪对不同修饰电极进行微观形貌表征,进一步优化电化学还原条件和测定DA实验条件。此外,通过循环伏安法考察DA在裸电极及RGO或Cu2O-RGO上的电化学响应。Cu2O-RGO/GCE实现抗坏血酸(ascorbic acid,AA)、DA和尿酸(uric?acid,UA)氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为204?mV和144?mV。该修饰电极检测的线性范围为1×10-8~1×10-6?mol/L和1×10-6~8×10-5?mol/L,检出限为6.0×10-9?mol/L。该修饰电极用于盐酸多巴胺注射液和血清中DA的含量测定,获得结果较好。  相似文献   

20.
研究提出了利用离子液体[BMⅠM]PF6(ⅠL)修饰的膨胀石墨糊电极(EGPE)快速检测苏丹红Ⅰ的电化学方法。膨胀石墨具有疏松多孔的结构、较大的比表面积、较好的电催化活性,离子液体具有增加电子传递速率的作用,从而在离子液的作用下可以增强膨胀石墨糊电极(ⅠL-EGPE)在电化学反应中的电流响应信号。在最佳条件下,离子液体[BMⅠM]PF6(ⅠL)修饰的膨胀石墨糊电极(EGPE)对苏丹红Ⅰ检测的氧化峰电流在1.0×10-9~3.0×10-6 mol/L浓度间呈线性关系,最小检出限为0.5 nmol/L(S/N=3),明显低于之前文献报道值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号