首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Catalysis communications》2007,8(11):1578-1582
In situ generation of H2O2 with high yield can be accomplished by reacting O2 with NH2OH from hydroxylammonium salt [NH2OH · HCl or (NH2OH)2 · H2SO4] in a neutral aqueous medium using a reusable heterogeneous Pd (1.0 wt%)/Al2O3 catalyst, even at low temperature (10 °C), with the formation of harmless by-products (viz. N2 and water). The presence of KCl or KBr in the medium has beneficial effect. The H2O2 generation is strongly influenced by the pH of medium, reaction period and temperature; best results are obtained at the optimum pH and reaction medium.  相似文献   

2.
《Catalysis communications》2004,5(11):681-685
Epoxidation of styrene by anhydrous tert-butyl hydroperoxide over a number of transition metal oxide (viz. TiO2, Cr2O3, MnO2, Fe2O3, Co3O4, NiO, CuO, ZnO, Y2O3, ZrO2, La2O3 and U3O8) supported nano-size gold catalysts, prepared by the homogeneous deposition–precipitation method, has been investigated. The supported gold catalysts (except Au/MnO2 and Au/U3O8) showed good styrene conversion activity and selectivity for styrene oxide in the epoxidation. The Au loading, Au particle size and performance in the epoxidation of the supported gold catalysts are found to be strongly influenced by the transition metal oxide support used in the catalyst. The Au/TiO2 and Au/CuO are promising catalysts for the selective epoxidation.  相似文献   

3.
Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.  相似文献   

4.
Nano-gold particles supported on different alkaline earth oxides (viz. MgO, CaO, BaO and SrO), Gr. IIIa metal oxides (viz. Al2O3, Ga2O3, In2O3 and Tl2O3), transition metal oxides (viz. TiO2, Cr2O3, MnO2, Fe2O3, CoOx, NiO, CuO, ZnO, Y2O3 and ZrO2), rare earth metal oxides (viz. La2O3, Ce2O3, Nd2O3, Sm2O3, Eu2O3, Tb2O3, Er2O3 and Yb2O3) and U3O8 [all prepared by depositing gold on corresponding metal oxide support by deposition precipitation (DP) and/or homogeneous deposition precipitation (HDP) method] were evaluated for their catalytic performance in the liquid phase epoxidation of styrene by tert-butyl hydroperoxide (TBHP) to styrene oxide and also in the solvent-free benzyl alcohol-to-benzaldehyde oxidation (by molecular oxygen or TBHP) reactions. For the epoxidation, the catalytic performance (styrene oxide yield) of the most promising nano-gold catalysts prepared by the HDP method was in the following order: Au/MgO > Au/Tl2O3 > Au/Yb2O3 > Au/Tb2O3 > Au/CaO (or TiO2). However, for the oxidation of benzyl alcohol to benzaldehyde by molecular oxygen, the order of choice for the most promising catalysts (based on benzaldehyde yield) was Au/U3O8 > Au/Al2O3 > Au/ZrO2 > Au/MgO. Whereas, when TBHP was used as an oxidizing agent for the benzyl alcohol oxidation, the order of choice for the most promising catalysts was Au/U3O8 > Au/MgO > Au/TiO2 > Au/ZrO2 > Au/Al2O3. The catalytic performance of a particular supported nano-gold catalyst was thus found to depend on the reaction catalysed by them. Moreover, it is strongly influenced by a number of catalyst parameters, such as the metal oxide support, the method of gold depositon on the support, the gold loading and also on the catalyst calcination temperature. Nano-gold particles-support interactions seem to play an important role in controlling the deposition of gold (amount of gold deposited and size and morphology of gold particles), formation of different surface gold species (Au0, Au1+ and Au3+) and electronic properties of gold particles and, consequently, control the catalytic performance (both the activity and selectivity) of the supported nano-gold catalysts in the reactions. The nano-gold catalysts prepared by the HDP method showed much better catalytic performance than those prepared by the DP, coprecipitation or impregnation method; in general, the HDP method provided supported gold catalysts with much higher gold loading and/or smaller size gold particles than that achieved by the DP and other methods.  相似文献   

5.
The origin of CO oxidation performance variations between three different supported Au catalysts (Au/CeO2, Au/Al2O3, Au/TiO2) was examined by in situ XAFS and DRIFTS measurements. All samples were prepared identically, by deposition-precipitation of an aqueous Au(III) complex with urea, and contained the same gold loading (~1 wt %). The as-prepared supported Au(III) precursors exhibited different reduction behaviour during exposure to the CO/O2/He reaction mixture at 298 K. The reducibility of the Au(III) precursor was found to decrease as a function of the support material in the order: titania > ceria > alumina. The as-prepared samples were inactive catalysts, but Au/TiO2 and Au/CeO2 developed catalytic activity as the reduction of Au(III) to metallic Au proceeded. Au/Al2O3 remained inactive. The developed catalytic CO oxidation activity at 298 K varied as a function of the support as follows: titania > ceria > alumina ~ 0. The EXAFS of samples pretreated in air at 773 K and in H2 at 573 K reveals the presence of only metallic particles for Au/TiO2 and Au/Al2O3. Au(III) supported on CeO2 remains unreduced after calcination, but reduces during the treatment with H2. CO oxidation experiments performed at 298 K with the activated samples show that the presence of metallic gold is necessary to obtain active catalysts (Au/CeO2 is not active after calcination) and that the reducible supports facilitate the genesis of active catalysts, while metallic gold particles on alumina are not active.  相似文献   

6.
Our group recently developed a series of Au/M x O y /TiO2 catalysts for CO oxidation, and demonstrated that some of these catalysts are still active after high-temperature treatment whereas Au/TiO2 deactivates significantly due to the sintering of gold nanoparticles at elevated temperatures (Ma Z, Overbury SH, Dai S (2007) J Mol Catal A 273:97). In the current work, the performance of Au/M x O y /TiO2 (M = Al, Ca, Fe, Zn, Ga, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) catalysts in water-gas shift (WGS) reaction was evaluated. The influences of different metal oxide (M x O y ) additives and pretreatment temperatures were investigated, and the catalyst stability as a function of reaction time on stream was tested. Some of these novel gold catalysts, with high activity and stability in water-gas shift, furnish new possibilities for further fundamental research and industrial development.  相似文献   

7.
Gold nanoparticles supported on multi-walled carbon nanotubes (Au/CNTs) were developed for the selective epoxidation of cyclooctene with oxygen and small amount of tert-butyl hydroperoxide (O2-TBHP). We found that the Au/CNTs could provide the best combination of selectivity and conversion in comparison with the supported gold catalysts with several other carriers like active carbon, graphite, TiO2, SiO2 and Al2O3. The conversion of cyclooctene and the selectivity to epoxide increased with the amount of TBHP, but both reached almost maxima when the TBHP amount was higher than 5.0 mol% of cyclooctene. The CNTs-supported gold nanoparticles with mean sizes ranging from 3.1 to 15.0 nm could be prepared by using sol-immobilization method. The Au/CNTs catalysts with smaller gold particle size were related to higher epoxide yield, indicating a size effect of gold nanoparticles on the catalytic performance. The results suggested that the epoxidation of cyclooctene over the Au/CNTs with use of O2-TBHP would be structure-sensitive.  相似文献   

8.
Structure of gold nanoparticles formed by physical vapor deposition onto thin ceria films was studied by scanning tunneling microscopy (STM). Gold preferentially nucleates on point defects present on the terraces of the well-ordered, fully oxidized films to a low density. The nucleation expands to the terrace step edges, providing a large variety of low-coordinated sites. Only at high coverage, the Au particles grow homogeneously on the oxygen-terminated CeO2(111) terraces. The morphology of Au particles was further examined by STM in situ and ex situ at elevated (up to 20 mbar) pressures of O2, CO, and CO + O2 at 300 K. The particles are found to be stable in O2 ambient up to 10 mbar, meanwhile gold sintering emerges at CO pressures above ∼1 mbar. Sintering of the Au particles, which mainly proceeds along the step edges of the CeO2(111) support, is observed in CO + O2 (1:1) mixture at much lower pressure (∼10−3 mbar), thus indicating that the structural stability of the Au/ceria catalysts is intimately connected with its reactivity in the CO oxidation reaction.  相似文献   

9.
This paper concerns the preparation of metal oxide-supported gold catalysts and their application to 2-propanol abatement in order to lower the light off temperature. Catalytic oxidation of 2-propanol was investigated on Au/CeO2, Au/Fe2O3, Au/TiO2 and Au/Al2O3 catalysts prepared from the deposition–precipitation (DP) method. The catalysts are characterized by XRD (X-ray diffraction), BET (Brunner–Emmett–Teller), TEM (transmission electron microscopy), NH3-TPD (NH3-temperature programmed desorption), H2-TPR (H2-temperature programmed reduction), ICP-AES (inductively coupled plasma-atomic emission spectroscopy) and XPS (X-ray photoelectron spectroscopy) techniques. The catalytic activity of Au/metal oxide samples towards the deep oxidation of 2-propanol to CO2 and water has been found to be strongly dependent on the kind of supports, the amount of gold loading, the calcination temperature and the moisture content in the feed.  相似文献   

10.
Gold nanoparticles with narrow and controlled size distributions have been synthesized chemically and deposited onto a carbon support. Using the resulting gold on carbon (Au/C) catalysts, Au particle size effects on the kinetics of the oxygen reduction reaction (ORR) were analyzed in acidic media (0.5 M H2SO4). From rotating ring-disk electrode (RRDE) voltammetric studies, it was found that, for bulk gold, the number of electrons, n, involved in the ORR was nearly constant at potentials above −0.2 V. On the contrary, for the catalysts with diameters less than 10-15 nm, the value of n increased as the potential became more negative, and the highest value of n was obtained when the size of Au particles was less than 3 nm. Those results showed that further reduction of H2O2 or direct 4-electron reduction of O2 proceeded at relatively low overpotential on extremely small gold clusters.  相似文献   

11.
This paper is concerned with the study of size effects in reactions of low-temperature CO oxidation on the catalysts Au/γ-Al2O3 and Au/δ-Al2O3 and complete oxidation of methane on the catalysts Pt/γ-Al2O3. For the synthesis of gold catalysts, four techniques have been applied: ionic adsorption, deposition-precipitation, chemical liquid-phase grafting, and decomposition of volatile gold complexes. Platinum catalysts have been prepared by aluminum oxide impregnation with aqueous solutions of H2[Pt(OH)6] that, depending on preparation conditions, contained mono- or oligonuclear hydroxocomplexes of platinum. Series of catalyst samples with a narrow size distribution of particles and a mean size variation from 0.5–1 to 20–25 nm have been prepared. The study of the catalytic properties of the prepared catalysts has shown that a decrease in mean size of supported metal particles leads to a sharp increase in specific catalytic activity in both systems. The activity maximum has been achieved for active component particles of 2–3 nm. A conclusion has been made that the application of nanosize catalysts is promising for the cleaning of air in closed rooms and vehicle exhaust gases from CO, for the utilization of methane, and for the obtaining of energy by the combustion of natural gas.  相似文献   

12.
Four microporous materials, zeolites HZSM-5, Y, Beta and TS-1, were used as the supports to prepare supported gold catalysts using impregnation or deposition precipitation. The gold catalysts were tested in the direct synthesis of hydrogen peroxide from H2 and O2 and for CO oxidation. The effect on the catalytic activity of different metal (e.g., Pd, Pt, Cu, Ag, Rh or Ru) on the synthesis of hydrogen peroxide was also tested. Organic substrates, such as cyclohexane or cyclooctene, were introduced to investigate the possibility of in situ H2O2 oxidation with these catalysts.  相似文献   

13.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

14.
This paper presents some important results of the studies on preparation and catalytic properties of nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation, which are carried out at the Boreskov Institute of Catalysis (BIC) starting from 2001. The catalysts with a gold loading of 1–2 wt.% were prepared via deposition of Au complexes onto different aluminas by means of various techniques (“deposition-precipitation” (DP), incipient wetness, “chemical liquid-phase grafting” (CLPG), chemical vapor deposition (CVD)). These catalysts have been characterized comparatively by a number of physical methods (XRD, TEM, diffuse reflectance UV/vis and XPS) and catalytically tested for combustion of CO impurity (1%) in wet air stream at near-ambient temperature. Using the hydroxide or chloride gold complexes capable of chemical interaction with the surface groups of alumina as the catalyst precursors (DP and incipient wetness techniques, respectively) produces the catalysts that contain metallic Au particles mainly of 2–4 nm in diameter, uniformly distributed between the external and internal surfaces of the support granules together with the surface “ionic” Au oxide species. Application of organogold precursors gives the supported Au catalysts of egg shell type which are either close by mean Au particle size to what we obtain by DP and incipient wetness techniques (CVD of (CH3)2Au(acac) vapor on highly dehydrated Al2O3 in a rotating reactor under static conditions) or contain Au crystallites of no less than 7 nm in size (CLPG method). Regardless of deposition technique, only the Cl-free Au/Al2O3 catalysts containing the small Au particles (di ≤ 5 nm) reveal the high catalytic activity toward CO oxidation under near-ambient conditions, the catalyst stability being provided by adding the water vapor into the reaction feed. The results of testing of the nanodispersed Au/Al2O3 catalysts under conditions which simulate in part removal of CO from ambient air or diesel exhaust are discussed in comparison with the data obtained for the commercial Pd and Pt catalysts under the same conditions.  相似文献   

15.
《Journal of Catalysis》2005,229(1):154-162
The total oxidation of C3H6 was investigated over Au/Al2O3, and multicomponent Au/MOx/Al2O3 (M: Ce, Mn, Co, Fe) catalysts prepared by deposition-precipitation with urea. The catalysts have been characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), total surface area (BET), and diffuse reflectance ultra-violet–visible spectroscopy DR/UV–Vis. Based on this characterization, it was concluded that gold is present as Au0. The most active catalyst is Au/CeOx/Al2O3. Ceria and the transition metal oxides act as cocatalysts. It can supply oxygen via a Mars and van Krevelen mechanism.  相似文献   

16.
The reduction of NO with octane under lean conditions was examined over gold supported on alumina and titania and over alumina supported bimetallic gold–silver catalysts. The silver loading was either 1.2 or 1.9 wt% whereas 0.3, 1 or 5 wt% gold was used. The catalysts were characterized by means of EDXS, N2-adsortion, UV–Vis and TEM to correlate recorded results with different preparation methods. UV–Vis measurements indicated that gold was present in the form of fine Au particles, single Au ions and small (Au)n δ+ clusters on the catalysts and silver was mainly present in the form of single Ag ions. The highest NO to N2 reduction activity was recorded over the 0.3Au–Al2O3 catalyst. The Au–TiO2 catalysts did not result in significant NO to N2 reduction.  相似文献   

17.
Supported gold catalysts on the mesoporous (MSP) metal oxides were prepared by a one-step, ultrasound-assisted reduction method, and characterized by XRD, HRTEM, EDX, BET, and XPS analysis. Their catalytic activities were examined in the oxidation of CO. Compared to the Au/Fe2O3(MSP) catalyst, the Au/TiO2(MSP) and Au/Fe2O3-TiO2(MSP) catalysts exhibited higher catalytic activity in the oxidation of CO at low temperatures. The high catalytic activity of Au/TiO2(MSP) was attributed to the metallic state of the gold nanoparticles, their small size (2–2.5 nm), and their high dispersion on the catalyst support.  相似文献   

18.
The bimetallic Au-M/Fe2O3 catalysts were prepared by deposition coprecipitation method with Au/M atomic ratio of 1. All the catalysts were measured for WGS reaction and characterized by TPR/TPO studies. Ruthenium- and nickel-modified catalysts showed higher WGS activities compared to the other systems including unmodified Au/Fe2O3 at low temperature (100 °C). At higher temperature (240 °C), ruthenium-, nickel-, bismuth-, lead-, copper-, silver-, thallium- and tin-modified catalysts were more active than unmodified Au/Fe2O3. Manganese- and cobalt-modified catalysts were less active than unmodified Au/Fe2O3. TPR analyses indicated a shift in reduction temperature in the bimetallic catalysts, suggesting a degree of interaction between gold and the second metal.  相似文献   

19.
Mössbauer spectroscopy and IR techniques were employed to characterize the iron-impregnated montmorillonite K10 clay catalysts, prepared by using acetonitrile or water solutions of iron(III) chloride. Samples prepared in a non-aqueous medium consisted of comparable amounts of -Fe2O3 and FeOOH, whereas those prepared in an aqueous medium showed only FeOOH-type species. The higher catalytic activity obtained using a non-aqueous medium for alkylation of arenes with benzyl chloride is attributed to the additional Lewis-type acidic sites associated with iron oxide.  相似文献   

20.
Gold particles supported on carbon and titania were explored as catalysts for oxidation of CO or glycerol by O2 at room temperature in liquid-phase water. Although Au/carbon catalysts were not active for vapor phase CO oxidation at room temperature, a turnover frequency of 5 s−1 could be achieved with comparable CO concentration in aqueous solution containing 1 M NaOH. The turnover frequency on Au/carbon was a strong function of pH, decreasing by about a factor of 50 when the pH decreased from 14 to 0.3. Evidently, a catalytic oxidation route that was not available in the vapor phase is enabled by operation in the liquid water at high pH. Since Au/titania is active for vapor phase CO oxidation, the role of water, and therefore hydroxyl concentration, is not as significant as that for Au/carbon. Hydrogen peroxide is also produced during CO oxidation over Au in liquid water and increasing the hydroxyl concentration enhances its formation rate. For glycerol oxidation to glyceric acid (C3) and glycolic acid (C2) with O2 (1–10 atm) at 308–333 K over supported Au particles, high pH is required for catalysis to occur. Similar to CO oxidation in liquid water, H2O2 is also produced during glycerol oxidation at high pH. The formation of the C-C cleavage product glycolic acid is attributed to peroxide in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号