首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2007,8(6):735-742
Efficient fluorescent white organic light-emitting diodes with low carrier-injection barriers were fabricated with device structure of indium tin oxide/N,N′-bis-(1-naphthy)-N,N′-diphenyl-1,1′-biphenyl-4-4′-diamine/white emission layer/1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene/lithium fluoride/aluminium. By blending in the blue host of 1-butyl-9,10-naphthalene-anthracene in the emissive layer an efficient electro-luminescent greenish-blue co-host of di(triphenyl-amine)-1,4-divinyl-naphthalene, with the doping of a trace amount of red dye of 4-(dicyano-methylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran, bright and colour-stable white emission with high power-efficiency of 14.6 lm/W at 100 cd/m2 or current efficiency of 19.2 cd/A at 300 cd/m2 or 18.7 cd/A at 10,000 cd/m2 was obtained. The resulted synergistic increase in brightness and efficiency may be attributed to the presence of cascading new routes with comparatively lower electron injection barrier.  相似文献   

2.
Low color temperature (CT) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency low CT organic light emitting diode can be easily fabricated by spin coating a single white emission layer. The resultant white device shows an external quantum efficiency (EQE) of 22.8% (34.9 lm/W) with CT 2860 K at 100 cd/m2, while is shown 18.8% (24.5 lm/W) at 1000 cd/m2. The high efficiency may be attributed to the use of electroluminescence efficient materials and the ambipolar-transport host. Besides, proper device architecture design enables excitons to form on the host and allows effective energy transfer from host to guest or from high triplet guest to low counterparts. By decreasing the doping concentration of blue dye in the white emission layer, the device exhibited an orange emission with a CT of 2280 K. An EQE improvement was observed for the device, whose EQE was 27.4% (38.8 lm/W) at 100 cd/m2 and 20.4% (24.6 lm/W) at 1000 cd/m2.  相似文献   

3.
《Organic Electronics》2008,9(2):273-278
The authors demonstrate a fluorescent white organic light-emitting device (WOLED) with double emissive layers. The yellow and blue dyes, 5,6,11,12-tetraphenylnaphthacene and N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine, are doping into the same conductive host material, N,N′-dicarbazolyl-4-4′-biphenyl). The maximum luminance and power efficiency of the WOLED are 14.6 cd/A and 9.5 lm/W at 0.01 mA/cm2, with the maximum brightness of 20 100 cd/m2 at 17.8 V. The Commission International de L’Éclairage coordinates change slightly from (0.27, 0.37) to (0.28, 0.36), as the applied voltage increases from 6 V to 16 V. The high efficiencies can be attributed to the balance between holes and electrons.  相似文献   

4.
《Organic Electronics》2007,8(6):683-689
White organic light-emitting diodes (WOLEDs) with four wavelengths were fabricated by using three doped layers, which were obtained by separating recombination zones into three emitter layers. Among these emitters, blue emissions with two wavelengths (456 and 487 nm) were occurred in the 4,4′-bis(carbazoyl-(9))-stilbene (BCS) host doped with a perylene dye. Also, a green emission was originated from the tris(8-quinolinolato)aluminum (III) (Alq3) host doped with a green fluorescent of 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. Finally, an orange emission was obtained from the N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host doped with a 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) dye. The white light could be emitted by simultaneously controlling the emitter thickness and concentration of fluorescent dyes in each emissive layer, resulting in partial excitations among those three emitter layers. Electroluminescent spectra of the device obtained in this study were not sensitive to driving voltage of the device. Also, the maximum luminance for the white OLED with the CIE coordinate of (0.34, 0.34) was 56,300 cd/m2 at the applied bias voltage of 11.6 V. Also, its external quantum and the power efficiency at about 100 cd/m2 were 1.68% and 2.41 lm/W, respectively.  相似文献   

5.
We report efficient blue electrophosphorescent polymer light emitting devices with polyfluorene (PFO) as the host and iridium bis[2-(4,6-difluorophenyl)-pyridinato-N,C2] picolinate (FIrpic) as the dopant. Despite the low-lying triplet energy level of the polyfluorene polymer host, phosphorescent quenching can be suppressed by using poly(N-vinylcarbazole) (PVK) as anode buffer layer, resulting in a high luminous efficiency of 26.4 cd A?1, which is one of the best results in the literature based on conjugated polymer reported to date. The reduced phosphorescent quenching is found to be associated with the exciton formation and charge carrier recombination within the PVK layer and the PVK/PFO interface due to the accumulation of holes. As compared with the devices based on non-conjugated host polymer PVK, the devices based on PFO showed a lower turn-on voltage (3.6 V vs. 4.4 V) and higher power efficiency (17 lm W?1 vs. 8.3 lm W?1) due to the higher mobility of PFO. When doubly doped with a newly synthesized yellow-emitting metallophosphor, white polymer light-emitting devices with superior device performance (a peak device efficiency of 40.9 cd A?1, a CIE coordinates of (0.32, 0.48), and a power efficiency of 31.4 lm W?1) was achieved. These findings can broaden our selection in polymer hosts for highly efficient phosphorescent blue emitting devices and can find potential applications in full color displays and solid-state lighting applications in the future.  相似文献   

6.
A new electrochromic viologen, 1,1′-bis-[4-(5,6-dimethyl-1H-benzimidazole-1-yl)-butyl]-4,4′-bipyridinium dibromide (IBV) was synthesized by di-quaternization of 4,4′-bipyridyl using 1-(4-bromobutyl)-5,6-dimethyl-1H-benzimidazole. X-ray photoelectron spectroscopy confirmed the formation of the IBV (viologen) salt as distinct signals due to quaternary nitrogen and neutral nitrogen, and ionic-bonded bromide were identified. An electrochromic device encompassing a dicyanamide ionic liquid based gel polymeric electrolyte with high ionic conductivity, a thermal decomposition temperature above 200 °C, and a stable voltage window of ~4 V with the IBV viologen dissolved therein, was constructed. IBV is a cathodically coloring organic electrochrome and the device underwent reversible transitions between transparent and deep blue hues; the color change was accompanied by an excellent optical contrast (30.5% at 605 nm), a remarkably high coloration efficiency of 725 cm2 C?1 at 605 nm and switching times of 2–3 s. Electrochemical impedance spectroscopy revealed an unusually low charge transfer resistance at the IBV salt/gel interface, which promotes charge propagation and is responsible for the intense coloration of the reduced radical cation state. The device was subjected to repetitive switching between the colored and bleached states and was found to incur almost no loss in redox activity, up to 1000 cycles, thus ratifying its suitability for electrochromic window/display applications.  相似文献   

7.
Four carbazole-based bipolar host materials are utilized for solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). These bipolar materials consist of an electron-donor unit (carbazole) linking to a fluorene unit bearing various electron-acceptor units (oxadiazole, cyano, and benzimidazole) via a saturated carbon, giving sufficiently high triplet energies due to the lack of direct electronic coupling between the donor and acceptor(s). The resulting physical properties and bipolar characteristics render the realization of efficient solution-processed green and white OLEDs feasible. The best green light-emitting device based on bipolar host CzFCBI incorporating a stepwise hole-injection/transporting system exhibit a low drive voltage, a maximum external quantum efficiency of 14.0%, a current efficiency of 49.0 cd/A, and a power efficacy of 55.0 lm/W. Moreover, the CzFOXa-based two-component (blue–orange) white light-emitting device shows a warmish-white emission with a maximum external quantum efficiency of 6.9% and stable chromaticity coordinates at different luminance levels and yield a high color rendering index (CRI) reaching 76 at a luminance of 1000 cd/m2.  相似文献   

8.
《Organic Electronics》2008,9(5):797-804
A new spiro-type compound, 2-(10-biphenylanthracene)-spiro[fluorene-7,9′-benzofluorene] (BH-3B) containing anthracene moiety was prepared for the blue host material. Also new dopant materials, 2-[4′-(phenyl-4-vinylbenzeneamine)phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-3BD) and 4-[2-naphthyl-4′(phenyl-4-vinylbenzeneamine)]phenyl (BD-1N) were successfully synthesized and a blue OLEDs were made from them. The structure of the device was as follows; ITO/DNTPD/α-NPD/Host:5% dopant/Alq3/Al-LiF. Among all of the devices, the device obtained from BH-3B host doped with 5% BH-3BD showed the best electroluminescence characteristics. The emission peak of EL is at 456 nm and the CIE value is (0.15, 0.14). The brightness of the device is up to 5407 cd/m2 at 10 V with the maximum EL efficiency of 3.4 cd/A.  相似文献   

9.
Efficient orange phosphorescent organic light-emitting devices based on simplified structure with maximum efficiencies of 46.5 lm/W and 51.5 cd/A were reported. One device had extremely low efficiency roll-off with efficiencies of 50.6 cd/A, 45.0 cd/A and 39.2 cd/A at 1000 cd/m2, 5000 cd/m2 and 10,000 cd/m2 respectively. The reduced efficiency roll-off was attributed to more balanced carrier injection and broader recombination zone. The designed simplified white device showed much lower efficiency roll-off than the control one based on multiple emitting layers. The efficiency of simplified white device was 40.8 cd/A at 1000 cd/m2 with Commission Internationale de I’Eclairage coordinates of (0.39, 0.46).  相似文献   

10.
Four new host/hole-transporting materials, namely 4,4′,4″,4‴-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-diphenylaniline) (4TPA-Ad, 1),4,4′,4″,4‴-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-di-p-tolylaniline) (4MTPA-Ad, 2), 1,3,5,7-tetrakis(4-(9H-carbazol-9-yl)phenyl)adamantane (4Cz-Ad, 3) and 1,3,5,7-tetrakis(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)adamantane (4tBuCz-Ad, 4), were designed and synthesized by incorporating four electron-donating arylamine units into the rigid adamantane skeleton via a simple C–N coupling reaction. Their thermal, photophysical and electrochemical properties were investigated. The molecular design endows the materials with high triplet energies of ∼3.0 eV, good solution processability, high thermal stability and appropriate HOMO levels. Two types of electroluminescent devices using 14 as hole-transporting or host materials were fabricated. The device based on 2 as solution-processed hole-transporting material and tris(quinolin-8-yloxy)aluminum as an emitter revealed a maximum current efficiency of 4.2 cd A−1, which was comparable with the TAPC-based control device. The sky-blue device employing 2 as solution-processed host material and 4,6-(difluorophenyl)pyridine-N,C2′)picolinate (FIrpic) as an emitter showed a maximum current efficiency of 16.6 cd A−1 with Commission Internationale de I’Eclairage (CIE) coordinates of (0.16, 0.32).  相似文献   

11.
Two host materials, DBTSF2 and DBTSF4, were designed and synthesized, incorporating dibenzothiophene (DBT) and spirobifluorene (SF) blocks. Their thermal, electrochemical and photo-physical properties were fully characterized. DBTSF4, which adopted an ortho-linkage between DBT and SF moieties, showed a significantly higher T1 energy of 2.82 eV as compared to its para-linkage analogue DBTSF2 (2.49 eV). Their applications as host for green, blue and white phosphorescent organic light-emitting diodes (PHOLEDs) were explored. The DBTSF4 based blue PHOLED has a highest current efficiency of 23.5 cd A?1. And using DBTSF4 as a single host, two-color based white PHOLEDs were achieved from cold white emission with CIE coordinate of (0.31, 0.43) to yellowish warm white emission (0.44, 0.49) with maximum current efficiencies varying from 35.8 to 52.3 cd A?1 and maximum external quantum efficiencies from 13.1% to 16.9% respectively. The white PHOLED devices also showed a low efficiency roll-off even at 10,000 cd m?2.  相似文献   

12.
Blue and white small-molecule organic light-emitting diodes are fabricated by multi-layer blade coating on hot plate at 80 °C with hot wind. Uniform multi-layer structures are made without dissolution due to rapid drying. Only small molecules originally developed for vacuum deposition are used. For hole transport layer of, 4′,4″-tris(carbazol-9-yl)triphenylamine (TCTA), electron transport layer of 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TBPI), emissive layer host of, 6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy), triplet emitters of bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III) (FIrpic), and cathode of LiF/Al, the peak current efficiency for blue emission is 25.1 cd/A (10.8% and 9.3 lm/W). Orange emitter iridium(III)bis (4-(4-t-butylphenyl) thieno[3,2-c]pyridinato-N,C2′)acetylacetonate (PO-01-TB) is added to obtain white emission with CIE coordinate of (0.39, 0.46) [1]. The current efficiency is 34.2 cd/A (11.6% and 12 lm/W) at maximum, 32.4 cd/A at 1000 cd/m2, and 31 cd/A at 10,000 cd/m2.  相似文献   

13.
《Organic Electronics》2007,8(4):349-356
The new amorphous molecular material, 2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole, that functions as good hole blocker as well as electron transporting layer in the phosphorescent devices. The obtained material forms homogeneous and stable amorphous film. The new synthesized showed the reversible cathodic reduction for hole blocking material and the low reduction potential for electron transporting material in organic electroluminescent (EL) devices. The fabricated devices exhibited high performance with high current efficiency and power efficiency of 45 cd/A and 17.7 lm/W in 10 mA/cm2, which is superior to the result of the device using BAlq (current efficiency: 31.5 cd/A and power efficiency: 13.5 lm/W in 10 mA/cm2) as well-known hole blocker. The ITO/DNTPD/α-NPD/6% Ir(ppy)3 doped CBP/2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole as both hole blocking and electron transporting layer/Al device showed efficiency of 45 cd/A and maximum brightness of 3000 cd/m2 in 10 mA/cm2.  相似文献   

14.
Here we report efficient and color-stable white polymer light-emitting devices (WPLEDs) based on a newly synthesized efficient blue emitting polymer poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)fluorene)-co-(3,7-dibenziothiene-S,S-dioxide10)] (PPF-3,7SO10) which dually function as host material and blue emitter, with appropriate blending ratio with two typical electroluminescent polymers, green emitting poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) and orange–red emitter poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH–PPV) with appropriate blending ratio. In a single active layer WPLEDs with a blending ratio of 100:0.8:0.5 (B:G:R) by weight, white light emission with CIE coordinate of (0.34, 0.35) was realized. The resulted device shows a high luminous efficiency (LE) of 8.7 cd A?1, which could be further enhanced to 14.0 cd A?1 with incorporation of a thin hole transporting layer poly (vinylcarbazole) (PVK) at the anode side. The obtained luminous efficiency is listed as one of the highest reported value for WPLEDs based on all fluorescent polymer emitters. The devices had appropriate color temperature of 2500–6500 K and high color rendering index (CRI) of 72–79, and are characterized with stable electroluminescent spectra upon change of current density, stress and annealing at high temperature, thus can find application in solid-state lighting.  相似文献   

15.
A hybrid white organic light-emitting diode (WOLED) with an emission layer (EML) structure composed of red phosphorescent EML/green phosphorescent EML/spacer/blue fluorescent EML was demonstrated. This hybrid WOLED shows high efficiency, stable spectral emission and low efficiency roll-off at high luminance. We have attributed the significant improvement to the wide distribution of excitons and the effective control of charge carriers in EMLs by using mixed 4,4′,4″-tri(9-carbazoyl) triphenylamine (TCTA) and bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp2) as the host of phosphorescent EMLs as well as the spacer. The bipolar mixed TCTA:Bepp2, which was proved to be a charge carrier switch by regulating the distribution of charge carriers and then the exciton recombination zone, plays an important role in improving the efficiency, stabilizing the spectrum and reducing the efficiency roll-off at high luminous. The hybrid WOLED exhibits a current efficiency of 30.2 cd/A, a power efficiency of 32.0 lm/W and an external quantum efficiency of 13.4% at a luminance of 100 cd/m2, and keeps a current efficiency of 30.8 cd/A, a power efficiency of 27.1 lm/W and an external quantum efficiency of 13.7% at a 1000 cd/m2. The Commission Internationale de l’Eclairage (CIE) coordinates of (0.43, 0.43) and the color rendering index (CRI) of 89 remain nearly unchanged in the whole range of luminance.  相似文献   

16.
《Organic Electronics》2014,15(7):1687-1694
A new series of heteroleptic iridium(III) complexes, bis(2-phenylpyridinato-N,C2′)iridium (2-(2′,4′-difluorophenyl)-4-methylpyridine), (ppy)2Ir(dfpmpy) and bis(2-(2′,4′-difluorophenyl)-4-methylpyridinato-N,C2′)iridium (2-phenylpyridine) (dfpmpy)2Ir(ppy), have been synthesized by using phenylpyridine as a main skeleton for bluish green phosphorescent organic light-emitting diodes (PhOLEDs). The Ir(III) complexes showed high thermal stability and high photoluminescent (PL) quantum yields of 95% ± 4% simultaneously. As a result, the PhOLEDs with the heteroleptic Ir(III) complexes showed excellent performances approaching 100% internal quantum efficiency with a very high external quantum efficiency (EQE) of ∼27%, a low turn-on voltage of 2.4 V, high power efficiency of ∼85 lm/W, and very low efficiency roll-off up to 20,000 cd/m2.  相似文献   

17.
In this paper, we report color stable phosphorescent white organic light-emitting diodes (OLEDs) based on a double emissive layer (EML) structure composed of blue and red/green phosphorescent units. Deep hole trapping situation of red and green dopants at the red/green EML could induce less voltage dependent white spectral characteristics by restricting the change of exciton generation zone. A wide band-gap host material, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), was used for achieving such deep-trap generation. Fabricated phosphorescent white OLED shows a slight color coordinate change of (?0.002, +0.002) from 1000 cd/m2 to 5000 cd/m2 with power efficiency of 38.7 lm/W and current efficiency of 46.4 cd/A at 1000 cd/m2. In addition, negligible color changes were observed by delaying red dopant saturation time using optimum red dopant concentration.  相似文献   

18.
We demonstrated highly efficient and color stable single-emitting-layer fluorescent WOLEDs using blue thermally activated delayed fluorescent material of bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) as host and traditional orange fluorescent material of (5,6,11,12)-tetraphenyl-naphthacene (rubrene) as dopant. At a low dopant concentration of 0.6 wt%, we achieved the efficient white emission that comprised of blue host and orange dopant. The maximum current efficiency, power efficiency and external quantum efficiency were 20.2 cd A−1, 15.9 lm W−1 and 7.48%, respectively. Besides, the Commission Internationale de I’Eclairage coordinates were almost the same with the increased voltage, which shifted from (0.359, 0.439) to (0.358, 0.430) as the voltage rose from 5 V to 8 V. The achievement of so high efficiency was attributed to the efficient up-conversion of DMAC-DPS triplet excitons and efficient energy transfer from host to dopant by Förster transfer mechanism. The more detailed working mechanism was also argued.  相似文献   

19.
A series of simple structures is investigated for realization of the highly efficient green phosphorescent organic light emitting diodes with relatively low voltage operation. All the devices were fabricated with mixed host system by using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TpPyPB) which were known to be hole and electron type host materials due to their great hole and electron mobilities [μh(TAPC): 1 × 10?2 cm2/V s and μe(TpPyPB): 7.9 × 10?3 cm2/V s] [1]. The optimized device with thin TAPC (5–10 nm) as an anode buffer layer showed relatively high current and power efficiency with low roll-off characteristic up to 10,000 cd/m2. The performances of the devices; with buffer layer were compared to those of simple devices with single layer and three layers. Very interestingly, the double layer device with TAPC buffer layer showed better current and power efficiency behavior compared to that of three layer device with both hole and electron buffer layers (TAPC, TpPyPB, respectively).  相似文献   

20.
All-solution-processed multilayer blue small molecular organic light-emitting diodes are fabricated by blade coating method. Fluorescent blue host,1-(7-(9,9′-bianthracen-10-yl)- 9,9-dioctyl-9H-fluoren-2-yl)pyrene, and blue dopant, 4,4′-(1E,1′E)-2,2′-(naphthalene-2,6-diyl)bis(ethene-2,1-diyl)bis(N,N-bis(4-hexylphenyl)aniline), are used to achieve good solubility and pinhole-free thin film by solution process. The multilayer device structure with hole/electron transport layer is achieved by blade coating method without the dissolution problem between layers. The efficiency of the all-solution-processed device is 4.8 cd/A at 1200 cd/m2, close to that by thermal deposition in high vacuum chamber. The device performance is optimized with the annealing temperature of TPBi layer at 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号