首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct synthesis of hydrogen peroxide from H2 and O2 was performed over supported gold catalysts. The catalysts were characterized by means of UV–vis, H2-TPR, TEM and XPS. Based on the results we conclude that metallic Au is the active species in the direct synthesis of hydrogen peroxide from H2 and O2. During preparation process of catalyst by deposition–precipitation with urea, the pH value increased and the gold particle size decreased with increasing the urea concentration. The catalyst prepared with higher urea concentration showed a higher activity and its stability also was efficiently improved. Gold nanoparticles, supported on TiO2 or Ti contained supports, gave a higher catalytic activity. Thiophene can be efficiently oxidized by hydrogen peroxide synthesized in situ from H2 and O2 over Au/TS-1.  相似文献   

2.
Activated carbon cloths (ACCs) were used as supports for Pd catalysts. The catalyst preparation was carried out by the impregnation method using acidic solution of palladium dichloride (PdCl2) as metal precursor. The effects of the oxidation state of the loaded metal, heat treatment of the catalysts in different atmosphere (H2, air) at different temperatures and surface chemistry of the support on the catalyst characterizations and the catalytic activities were investigated. Wet oxidation of ACC was done by nitric acid in order to induce oxygen-containing surface functional groups. Surface chemistry of the support and oxidation state of the metallic phase was investigated by means of XPS, TPD, SEM, DTA and TGA tests. Direct synthesis of hydrogen peroxide from H2 and O2 was performed batch wise in a stainless steel autoclave. The reactions were conducted under high pressure (38 bar) at 0 °C and methanol was used as reaction medium. The direct synthesis results showed that the oxygen-containing surface functional groups increase the selectivity of the catalysts by reducing the rate of water production. Existence of the oxidized state of Pd (PdO) also makes the catalyst more selective than the corresponding zerovalent state (Pd0). PdO affected on selectivity by increasing the rate of H2O2 production and reducing the amount of production of water, simultaneously.  相似文献   

3.
SBA-3 and SiO2-supported MoVTe mixed oxide catalysts have been prepared by impregnation and/or direct synthesis methods and tested for selective oxidation of isobutane to methacrolein (MAL). It was found that the supported catalysts showed much higher activity than the bulk MoVTe mixed oxide for the reaction. Among the supported catalysts, better isobutane conversion and MAL yield were achieved on the 3% MoV0.8Te0.23Ox/SBA-3 catalyst prepared by the impregnation method. The catalysts were characterized with BET, XRD, Raman, H2-TPR, XPS and FT-IR of pyridine adsorption. The good performance of the SiO2 and SBA-3 supported MoV0.8Te0.23Ox catalysts was attributed to a combination of different properties: (i) formation of well dispersed active phases on large surface areas of SiO2 and SBA-3 supports, which is beneficial for the isolation of active site and preventing the further oxidation of unstable reaction intermediate as well as product; (ii) improved activity for hydrogen abstraction of C-H bond of isobutane due to the formation of isolated pseudotetrahedral VO4 species.  相似文献   

4.
《Journal of Catalysis》2006,237(2):213-219
Tubular catalytic membranes (TMCs) active in the direct synthesis of hydrogen peroxide were prepared, characterized, and tested using methanol as the reaction medium. Low hydrogen peroxide selectivity was found when only palladium was used as a catalyst, whereas palladium/platinum bimetallic samples gave higher productivity and selectivity, with an optimum molar ratio of 18. The H2O2 decomposition rate is influenced by the feed gases. O2 improves H2O2 stability, whereas H2 causes hydrogen peroxide to decompose at a higher rate. The most likely decomposition pathway should be the reduction of H2O2 to water by H2. Bromide ion was used as a promoter and when used in excess (60 ppm) causes a decrease in overall catalytic activity.  相似文献   

5.
Reaction of O2 with hydroxylamine or its salts over a number of supported gold catalysts containing Au nanoparticles (at 10–70 °C) has been studied at atmospheric pressure for the in situ generation of H2O2 (required for organic oxidation reactions in the synthesis of fine/specialty chemicals) in aqueous (water) or non-aqueous medium. Hydrogen peroxide in high yields with harmless by-products (viz. water and nitrogen) can be generated in situ by the reduction of O2 by hydroxylammonium sulfate (or chloride) or hydroxylamine using the supported gold catalysts particularly Au/Gd2O3, Au/La2O3 and Au/MgO, in aqueous (water) or non-aqueous (viz. methanol) medium at close to ambient conditions. The reduction of O2 by hydroxylammonium salt to H2O2, however, requires preneutralization of the salt by alkali; in the absence of the neutralization, only water is formed in the reaction.  相似文献   

6.
The heterogeneous catalytic wet oxidation of methyl tert-butyl ether (MTBE) with hydrogen peroxide, catalyzed by the iron-containing zeolites Fe-ZSM5 and Fe-Beta, was studied at ambient conditions and pH 7. The kinetics of MTBE degradation could be well-fitted to a pseudo-first-order model. Using Fe-ZSM5, the dependence of the reaction rate constant on hydrogen peroxide and catalyst concentration was determined. Furthermore, the formation and oxidation of tert-butyl alcohol and tert-butyl formate as intermediates of MTBE oxidation were studied. A comparison of the reaction rates of MTBE, trichloroethylene and diethyl ether in the Fe-ZSM5/H2O2 system revealed that adsorption plays a positive role for the degradation reaction.Comparing the two types of Fe-containing zeolites applied in this study, Fe-Beta showed a lower catalytic activity for H2O2 decomposition and also MTBE degradation. However, in terms of utilization of H2O2 for MTBE degradation Fe-Beta is advantageous over Fe-ZSM5. This could be explained by the stronger adsorptive enrichment of MTBE on the Fe-Beta zeolite. This study shows that Fe-containing zeolites are promising catalysts for oxidative degradation of MTBE by H2O2.  相似文献   

7.
A series of molybdovanadophosphoric acid (MVPA) supported on mesoporous silica was synthesized by an incipient wetness impregnation method. The catalysts were characterized by nitrogen adsorption?Cdesorption, X-ray powder diffraction, Fourier-Transform Infra red spectroscopy (FT-IR), UV?CVis Diffused reflectance spectroscopy (UV?CVis DRS), Temperature programmed reduction (TPR) and 31P MAS Nuclear magnetic resonance(NMR) study. The characterization data reveals the incorporation of vanadium in phosphomolybdic acid and retention of intact Keggin ion on the support. The catalytic activities were evaluated for oxidation of benzaldehyde using molecular oxygen as oxidant as the new green reaction system. Among all the promoted catalysts, 50wt% molybdovanadophosphoric acid supported on MCM-41 exhibits highest catalytic activity in oxidation of benzaldehyde, giving 95% conversion. Other oxidants like H2O2 and tert-butyl hydrogen peroxide (TBHP) were also tested for benzaldehyde oxidation reaction.  相似文献   

8.
Amorphous and crystalline niobium(V) and tantalum(V) oxides were treated with hydrogen peroxide and studied by XRD, UV–vis, FTIR and ESR techniques to identify changes on their surface upon interaction with hydrogen peroxide. Differences between amorphous and crystalline materials in the interaction with H2O2 depending on the hydroxylation of the surface and the nature of OH groups were evident. The type of radical species formed on hydroxylated amorphous materials treated with H2O2 depended on the nature of metal oxide. It was proved that peroxo radical species formed in the interaction of H2O2 with amorphous Nb2O5 were the active intermediates in the oxidation of glycerol to glycolic acid with hydrogen peroxide. The radicals formed on amorphous Ta2O5 surface treated with hydrogen peroxide were poorly active in the oxidation of glycerol. Detailed study of the above mentioned radicals is in progress and will be a subject of a separate paper.  相似文献   

9.
Different iron-containing catalysts have been tested for the oxidation of phenol aqueous solutions in a catalytic fixed bed reactor in the presence of hydrogen peroxide. All the catalysts consist of iron oxide, mainly crystalline hematite particles, over different silica supports (mesostructured SBA-15 silica and non-ordered mesoporous silica). The immobilization of iron species over different silica supports was addressed by direct incorporation of metal during the synthesis or post-synthesis impregnation. The synthesis conditions were tuned up to yield agglomerated catalysts with iron loadings between 10 and 15 wt.%. The influence of the preparation method and the type of silica support was evaluated in a catalytic fixed bed reactor for the continuous oxidation of phenol in terms of catalysts activity (phenol and total organic carbon degradation) as well as their stability (catalyst deactivation by iron leaching). Those catalysts prepared by direct synthesis, either in presence of a structure-directing agent (Fe2O3/SBA-15(DS)) or in absence (Fe2O3/SiO2(DS)), achieved high catalytic performances (TOC reduction of 65% and 52%, respectively) with remarkable low iron leaching in comparison with their silica-based iron counterparts prepared by impregnation. Catalytic results have demonstrated that the synthesis method plays a crucial role in the dispersion and stability of active species and hence resulting in superior catalytic performances.  相似文献   

10.
Palladium-exchanged insoluble heteropolyacid (Pd0.15CsxH2.7?xPW12O40) catalysts were prepared with a variation of cesium content (x = 2.0, 2.2, 2.5, and 2.7), and were applied to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Pd0.15CsxH2.7?xPW12O40 showed high catalytic performance even in the absence of H2SO4 additive, indicating that Pd0.15CsxH2.7?xPW12O40 acted as an efficient catalyst and served as an alternate acid source in the reaction. The catalytic performance of Pd0.15CsxH2.7?xPW12O40 increased with increasing surface acidity of the catalyst. Among the catalysts tested, Pd0.15Cs2.5H0.2PW12O40 catalyst with the largest surface acidity showed the highest yield for hydrogen peroxide.  相似文献   

11.
Gold nanoclusters on TiO2 powder were prepared from adsorbed AuIII(CH3)2(C5H7O2) (dimethyl acetylacetonate gold(III)) and characterized by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The samples were tested as catalysts for CO oxidation at 298 K and atmospheric pressure and characterized by EXAFS and XANES with the catalysts in the working state. The XANES results identify Au(III) in the initially prepared sample, and the EXAFS data indicate mononuclear gold complexes as the predominant surface gold species in this sample, consistent with the lack of Au–Au contributions in the EXAFS spectrum. The mononuclear gold complex is bonded to two oxygen atoms of the TiO2 surface at an Au–O distance of 2.16 Å. Treatment of this complex in He or in H2 at increasing temperatures led to formation of metallic gold clusters of increasing size, ultimately those with an average diameter of about 15 Å. The data demonstrate the presence of metallic gold clusters in the working catalysts and also show these clusters alone are not responsible for the catalytic activity.  相似文献   

12.
Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.  相似文献   

13.
吡啶改性Pd/SiO2催化剂用于H2和O2直接合成H2O2   总被引:1,自引:0,他引:1       下载免费PDF全文
引言过氧化氢(H2O2)是一种理想的绿色氧化剂,广泛应用于化学品合成、纺织、造纸、环保、食品、医药、冶金和农业等领域[1]。目前,蒽醌法[2-5]是工业上生产H2O2的主要方法。20世纪40年代,德国I.G.Farbenindustrie首先采用蒽醌法(又称Riedl-Pfleiderer法)工业化生产过氧化氢。该方法首先将2-烷基蒽醌(通常是2-乙基蒽醌)溶解于合适的有机溶剂中,溶液中的2-烷基蒽醌经催化剂催化加氢,被还原成蒽氢醌或5,6,7,8-四氢蒽氢醌,再经空气氧化得到蒽醌或四氢蒽醌和  相似文献   

14.
In this paper, a comparative study between nitrous oxide and hydrogen peroxide decomposition over a series of catalysts prepared via the combustion of silver, aluminum, and iron nitrates (with different aluminum: iron ratios). Urea was used as a combustion fuel. The calcinations were affected at the 400–700 °C temperature range. The produced catalysts were characterized by using XRD and SEM analyses. The obtained results revealed that silver metal supported on Al2O3 and/or Fe2O3 represent the major constituents of all the calcinations products, i.e. Ag/FexAl2−xO3. However, two different interfaces are involved in the two test reactions, all the catalysts were able to decompose both reactants yielding oxygen as a joint product. Meanwhile, it was found nitrous oxide destruction activity increases with decreasing both silver particles size and iron content in the catalysts substrate. On the contrary, increasing iron content in the different catalyst was found to enhance hydrogen peroxide decomposition activity. Moreover, a synergic effect was observed for the catalysts having Al:Fe ratio of 0.5:1.5.  相似文献   

15.
The influence of hydrogen peroxide on the adsorption and oxidation of carbon monoxide, methanol and ethanol adlayers on porous Pt electrodes were studied in 2 M sulphuric acid solution by means of cyclic voltammetry and differential electrochemical mass spectrometry (DEMS). The oxidation of adsorbed species is observed at electrode potentials far less negative than those required for electrochemical adsorbate oxidation. The oxidation by H2O2 is dependent on its concentration in solution, as well as on the adsorbates and their coverages. In all cases the isolated adlayers are oxidised by dissolved H2O2. However, the presence of H2O2 during adsorption partially inhibits adlayer formation from CH3OH and C2H5OH, but avoids almost completely the adsorption of carbon monoxide. The removal of the residues from the surface by dissolved hydrogen peroxide probably occurs through Oad species formed during the heterogeneous decomposition reaction of H2O2 on Pt.  相似文献   

16.
Direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 is an ideal route. H2/O2 plasma has a great potential for direct synthesis of high purity H2O2 without purification operations. However, low yield and high energy consumption limits the application of H2/O2 plasma in industry. This article reports that gas state Ar and H2O molecule serving as molecular catalysts promoted the synthesis of H2O2 from H2/O2/Ar/H2O plasma dramatically: the H2O2 yield was enhanced by 244% and the energy consumption was reduced by 70.9%. Ar not only increased the electron density, but also selectively accelerated the dissociation of H2 toward the formation of ?HO2, a key intermediate species in H2O2 synthesis. While H2O facilitated the formation of ?HO2 radical and stabilized it by forming a HO2?H2O complex, resulting in enhancing the H2O2 production. This single molecular catalysis reduced the cost of H2O2 synthesis more than 50%. © 2017 American Institute of Chemical Engineers AIChE J, 64: 981–992, 2018  相似文献   

17.
This work reports adsorption and catalytic oxidation process for degradation of hexamine (HMT)-containing industrial wastewater based on the reduction in total organic carbon. The studied systems include hydrogen peroxide, MCM-41, phosphotungstic acid (PTA)/MCM-41 embedded via impregnation method, PTA/H2O2 and PTA/MCM-41 embedded via impregnation or direct synthesis methods in the presence of hydrogen peroxide. The TOC results indicated that the system including PTA embedded within MCM-41 via direct synthetic method in the presence of H2O2 has a higher performance for degradation of HMT-containing wastewater. The total organic carbon for the mineralization of HMT was obtained to be 57%, under optimum conditions.  相似文献   

18.
Au/Al2O3 · xH2O and Au/TiO2/Al2O3 · xH2O (x = 0–3) catalysts were prepared by assembling gold nanoparticles on neat and TiO2-modified Al2O3, AlOOH, and Al(OH)3 supports, and their catalytic activity in CO oxidation was tested either as synthesized or after on-line pretreatment in O2–He at 500 °C. A promotional effect of TiO2 on the activity of gold catalysts was observed upon 500 °C-pretreatment. The catalyst stability as a function of time on stream was tested in the absence or presence of H2, and physiochemical characterization applying BET, ICP-OES, XRD, TEM, and 27Al MAS NMR was conducted.  相似文献   

19.
The hydroxylation of benzene to phenol with hydrogen peroxide was investigated using different solvents and a series of catalysts, obtained by modification of titanium silicalite (TS‐1). The best results were obtained after post‐synthesis treatment of TS‐1 with NH4HF2 and H2O2. The new catalyst (TS‐1B), used in the presence of a particular co‐solvent (sulfolane) is able to protect the produced phenol from over‐oxidation and dramatically enhanced the selectivity of the reaction.  相似文献   

20.
Palladium catalysts supported on SO3H-functionalized SiO2 and TiO2 (denoted as Pd/SO3H-SiO2 and Pd/SO3H-TiO2) were applied to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. For comparison, palladium catalysts supported on bare SiO2 and TiO2 (denoted as Pd/SiO2 and Pd/TiO2) were also employed to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Selectivity and yield for hydrogen peroxide over Pd/SO3H-SiO2 and Pd/SO3H-TiO2 catalysts were higher than those over Pd/SiO2 and Pd/TiO2 catalysts. SO3H-functionalized SiO2 and TiO2 supports efficiently served as an alternate acid source in the direct synthesis of hydrogen peroxide from hydrogen and oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号