首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The water gas shift (WGS) reaction over Pt and Pd catalysts supported on various perovskite oxides has been investigated at 573 K without catalyst pretreatment. The Pt and Pd catalysts on LaCoO3 support showed high catalytic activity. Interaction between Pt or Pd and the support is considered to promote the WGS reaction: Pt/LaCoO3 had high initial activity but deactivated immediately; Pd/LaCoO3 was less active than Pt/LaCoO3, but had superior stability. Catalysts were characterized using XRD, STEM, XPS, and H2-temperature programmed reduction (TPR). Results of this study showed that reduction of the support decreased the CO conversion on Pt/LaCoO3. On the other hand, Pd/LaCoO3 showed stable activity for the WGS reaction. Therefore, Pd was added to Pt/LaCoO3 for stabilizing the catalyst activity, and 0.5 wt.% Pd/1 wt.% Pt/LaCoO3 catalyst showed higher activity and stability.  相似文献   

2.
In this report, commercial TiO2 nanoparticles were doped with nitrogen by a manual grinding method using urea. The prepared catalyst was characterized by X-ray diffraction (XRD), diffuse reflectance spectra (DRS), and transmission electron microscopy (TEM). N-doped TiO2 was immobilized on ceramic plates by methyl tri-methoxy silane. Next, multi-walled carbon nanotubes (CNTs) were stabilized on carbon paper to fabricate the cathode. Scanning electron microscopy (SEM) was employed to confirm stabilization of the CNTs. The prepared cathode and immobilized catalyst were utilized for the degradation of C.I. Direct Red 23 (DR23) by the photoelectro-Fenton (PEF) process in the presence of citrate (Cit) combined with a photocatalytic process. The coupled PEF/Cit/N-TiO2 process could be performed under visible light, not only due to the formation of iron–citrate complexes, but also because of the incorporation of nitrogen to the crystalline structure of TiO2 and the generation of TiO2 complexes with electrogenerated H2O2. Results demonstrated that the degradation efficiency of DR23 (20 mg/L) using the identical operational conditions, followed a decreasing order of: PEF/Cit/N-TiO2 > PEF/Cit > PEF > EF > N-TiO2. Eventually, a model was developed by the central composite design (CCD) method, describing the degradation efficiency as a function of the operational parameters.  相似文献   

3.
Nickel substituted strontium hexaferrite, SrNi2Fe10O19·(SrFe12O19/NiFe2O4) nanoparticles have been synthesized by low combustion method by citrate precursors using sol to gel (S–G) followed by gel to nano crystalline (G–N) conversion. The resulting ‘as-synthesized’ powder is heat treated (HT) at 800 and 1000 °C for 4 h in nitrogen atmosphere. The hysteresis loops show an increase in saturation magnetization from 27.443 to 63.706 emu/g with increasing HT temperatures. The multiwalled carbon nano tubes (CNTs) were synthesized by thermal decomposition of acetylene gas over iron-catalyst deposited on silicon wafer in the temperature range of 750–800 °C. A microwave absorbing medium is prepared by adding CNTs in the nickel substituted strontium hexaferrite nanoparticles. Addition of certain mass of CNTs improves the microwave absorption properties and wave band of SrFe12O19/NiFe2O4 absorbent. When 10 wt% CNTs is mixed with SrFe12O19/NiFe2O4 nanoparticles to fabricate a composite with 2 mm thickness, the maximum reflection loss reaches to ?36.817 dB at 9.292 GHz and ?10 dB bandwidth reaches 3.27 GHz.  相似文献   

4.
Mesoporous yLaCoO3/SBA-15 (y = 10–50 wt%) catalysts were prepared and characterized for the combustion of toluene and ethyl acetate (EA). The results show that well-ordered mesoporous LaCoO3/SBA-15 catalysts of high surface areas (338–567 m2/g) could be fabricated by a facile in situ method of hydrothermal treatment. The particles of perovskite-type LaCoO3 were highly dispersed on the walls of pore channels. The ordered mesoporous structure and high dispersion of LaCoO3 are beneficial to the adsorption and activation of toluene and EA molecules. We found that in terms of specific activity, the in situ fabricated 35LaCoO3/SBA-15 and 40LaCoO3/SBA-15 is, respectively, superior to 35LaCoO3/SBA-15_imp (generated by incipient wetness impregnation method) and bulk LaCoO3 (prepared by sol–gel method) in catalytic performance. Based on the above results, we conclude that the excellent performance can be attributed to the good dispersion of highly reducible LaCoO3 species in yLaCoO3/SBA-15.  相似文献   

5.
An Off-Lattice Monte Carlo model was developed to investigate effective thermal conductivities (Keff) and thermal transport limitations of polymer composites containing carbon nanotubes (CNTs) and inorganic nanoparticles. The simulation results agree with experimental data for poly(ether ether ketone) (PEEK) with inclusions of CNTs and tungsten disulfide (WS2) nanoparticles. The developed model can predict the thermal conductivities of multiphase composite systems more accurately than previous models by taking into account interfacial thermal resistance (Rbd) between the nanofillers and the polymer matrix, and the nanofiller orientation and morphology. The effects of (i) Rbd of CNT–PEEK and WS2–PEEK (0.0232–115.8 × 10−8 m2K/W), (ii) CNT concentration (0.1–0.5 wt%), (iii) CNT morphology (aspect ratio of 50–450, and diameter of 2–8 nm), and (iv) CNT orientation (parallel, random and perpendicular to the heat flux) on Keff of a multi-phase composite are quantified. The simulation results show that Keff of multiphase composites increases when the CNT concentration increases, and when the Rbd of CNT–PEEK and WS2–PEEK interfaces decrease. The thermal conductivity of composites with CNTs parallel to the heat flux can be enhanced ∼2.7 times relative to that of composites with randomly-dispersed CNTs. CNTs with larger aspect ratio and smaller diameter can significantly improve the thermal conductivity of a multiphase polymer composite.  相似文献   

6.
Absorbents with “tree-like” structures, which were composed of hollow porous carbon fibers (HPCFs) acting as “trunk” structures, carbon nanotubes (CNTs) as “branch” structures and magnetite (Fe3O4) nanoparticles playing the role of “fruit” structures were prepared by chemical vapor deposition technique and chemical reaction. Microwave reflection loss, permittivity and permeability of Fe3O4–CNTs–HPCFs composites were investigated in the frequency range of 2–18 GHz. It was proven that prepared absorbents possessed the excellent electromagnetic wave absorbing performances. The bandwidth with a reflection loss less than −15 dB covers a wide frequency range from 10.2 to 18 GHz with the thickness of 1.5–3.0 mm, and the minimum reflection loss is −50.9 dB at 14.03 GHz with a 2.5 mm thick sample layer. Microwave absorbing mechanism of the Fe3O4–CNTs–HPCFs composites is concluded as dielectric polarization and the synergetic interactions exist between Fe3O4 and CNTs–HPCFs.  相似文献   

7.
A facile direct precipitation method has been developed for the synthesis of multi-functional magnetic, microwave to heat responsive properties with Fe3O4 nanoparticles as the core and WO3  x as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bi-functional nanoparticles had a core-shell structure and a spherical morphology. The average size was ~ 250 nm, and the thickness of the shell was ~ 15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and the WO3  x shell were obtained. The nanoparticles showed both strong magnetic, and unique microwave to heat responsive properties, which may lead to development of nanoparticles with great potential for applications in drug targeting delivery, controlled release drug, photo- and microwave-thermal combination therapy and water treatment.  相似文献   

8.
Density of 3 × 1011/cm2 and diameter of CNTs of 9–12 nm were successfully controlled by using the multi-layered catalyst film consisting of an additional Ni layer on Fe/Al catalyst film. EDS analysis for the annealed catalyst films revealed that the increase of the density of Fe catalyst particles corresponded with the decrease of Ni in the films, which strongly suggested that the additional thin Ni layer on the Fe/Al multi-layered catalyst films prevented the fine Fe catalyst particles from agglomeration, resulting in the growth of high-density, and uniform diameter of CNTs.  相似文献   

9.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of ∼80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

10.
The present study focuses on the synthesis of nanocomposite gamma alumina (γ-Al2O3), boehmite and multi- walled carbon nanotubes (MWCNTs) via a solvothermal procedure. The method is based on the ex situ filling of opened CNTs by liquid reactants. The microstructure and morphology of the synthesized nanocomposite Al2O3@CNTs/Al2O3 was characterized by high resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and N2 adsorption–desorption analysis.Based on the experimental results, it was determined that the volume ratio of γ-Al2O3/MWCNTs and the surface tension of the solvent both greatly influence the morphology of the nanocomposite. The resultant MWCNTs were coated and filled by homogeneous and uniform boehmite and γ-Al2O3 layers and nanoparticles with thicknesses of 1–3 nm and diameters of 20–40 nm, when the volume ratio of γ-Al2O3/MWCNTS is 1 and the surface tension of the solvent is approximately 26 mN m?1 at 20 °C, far below the maximum value (100–200 mN m?1) for MWCNT filling.  相似文献   

11.
This paper presents the mechanical behavior of LaCoO3 and La0.8Ca0.2CoO3 ceramics under four-point bending in which the two cobaltites are subjected to a low stress of ∼8 MPa at temperatures ranging from room temperature to 1000 °C. Unexpected stiffening is observed in pure LaCoO3 in the 700–900 °C temperature range, leading to a significant increase in the measured Young’s modulus, whereas La0.8Ca0.2CoO3 exhibits softening from 100 °C to 1000 °C, as expected for most materials upon heating. Neutron diffraction, X-ray diffraction and micro-Raman spectroscopy are used to study the crystal structure of the two materials in the RT–1000 °C temperature range. Despite a detailed study, there is no conclusive evidence to explain the stiffening behavior observed in pure LaCoO3 as opposed to the softening behavior in La0.8Ca0.2CoO3 at high temperatures (above 500 °C).  相似文献   

12.
Combustive oxidation of volatile organic compounds (VOCs), such as propyl alcohol, toluene and cyclohexane, were studied. The combustion was catalyzed by nanoparticles of La1−xSrxCoO3 (x = 0, 0.2) perovskites prepared by a co-precipitation method. The results showed high activities of the perovskite catalysts. Compared to LaCoO3, in particular, La0.8Sr0.2CoO3 was much higher in catalytic ability. The total oxidation of VOCs followed the increasing order: cyclohexane < toluene < propyl alcohol. The T99% of cyclohexane was 40 °C lower than that of toluene, which appeared to be determined by the bond strengths of the weakest C–H and C–C bonds. The 100-h stability experiments showed that La1−xSrxCoO3 (x = 0, 0.2) perovskite was highly stable.  相似文献   

13.
Ammonium ferric citrate (AFC) was used as a single-source molecular precursor to prepare Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon by pyrolysis in Ar atmosphere followed by acid-leaching. Comparative studies, using citric acid and ferric citrate as the precursors, indicated that the ammonia and ferric ion in AFC and the pyrolysis temperature affected the composition of iron species and the properties of carbon in AFC-derived materials. Above the pyrolysis temperature of 600 °C, the iron species were Fe/Fe3C, and the carbon had a hollow graphitic nanoshell structure in AFC-derived materials. The specific surface area and content of nitrogen element decreased with increasing pyrolysis temperature. The AFC-derived material pyrolyzed at 600 °C had the optimal graphitization degree, specific surface area (489 m2 g−1) and content of nitrogen (1.8 wt.%), thus resulted in the greatest activity for oxygen reduction reaction among the AFC-derived materials pyrolyzed at different temperatures. The AFC-derived material pyrolyzed at 600 °C exhibited improved methanol-resistance ability compared with Pt/C catalyst.  相似文献   

14.
K and Mg substituted perovskite catalysts La1  xKxCo1  yMgyO3 (x = 0–0.4, y = 0–0.2) for soot combustion were prepared by citric acid complexation and characterized by XRD, FT-IR, SEM, TEM, EDS, H2-TPR, XPS and TG. Soot combustion was remarkably accelerated when K was introduced into LaCoO3. Then Mg was doped into the K substituted LaCoO3, soot combustion was further improved for the restrained growth of Co3O4 phase. K/Mg substitutions were responsible for enhancing activity of catalysts by improving reducibility as suggested by H2-TPR studies. Among all the catalysts, La0.6K0.4Co0.9Mg0.1O3 exhibited the highest activity.  相似文献   

15.
《Catalysis communications》2007,8(11):1609-1614
A new, novel, efficient, and stable green catalyst has been successfully used as a catalyst in aqueous ozone decomposition in acidic medium. The catalyst was characterized by using X-ray fluorescence (XRF), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The sludge mainly consists of various metal and non-metal oxides. The effect of various experimental parameters such as catalyst loading, initial ozone concentrations, and various metal oxide catalysts on the decomposition of ozone was investigated. The decomposition of dissolved ozone was substantially enhanced by increasing the catalyst loading from 125 to 750 mg and by increasing the initial ozone concentration. The ozone decomposition efficiencies of Al2O3, SiO2, TiO2, Fe2O3, ZnO, and sludge have been studied and the efficiencies of these catalysts were found to be in the following order: ZnO  sludge > TiO2 > SiO2 > Al2O3  Fe2O3. The catalytic stability was also investigated for up to four successive cycles and it was found that the catalyst was stable and ozone did not affect the catalyst morphology and its composition. However, the surface area of the catalyst increased after 1st cycle then it became stable. It was concluded that the sludge powder used in this study was a promising catalyst for aqueous ozone decomposition.  相似文献   

16.
The direct formation of hydrogen peroxide from H2 and O2 was successfully carried out in a capillary microreactor at room temperature and atmospheric pressure. A key element in sustaining the activity of the catalyst is the incarceration of the palladium nanoparticles in a cross-linkable amphiphilic polystyrene-based polymer, prepared following the protocol of Kobayashi [R. Akiyama, S. Kobayashi, J. Am. Chem. Soc. 125 (2003) 3412–3413]. The immobilization effectively reduced the leaching of palladium under acidic conditions. Applying the catalyst as a coating on the inner walls of a capillary enabled the sustained production of 1.1% hydrogen peroxide over at least 11 days. The highest catalyst utilization in a 2 mm capillary reactor was 0.54 molH2O2/h gPd. When the inner diameter of the reactor capillary was reduced to 530 μm, the rate was enhanced fourfold to 2.28 molH2O2/h gPd corresponding to a turnover frequency of 0.067 s?1.  相似文献   

17.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

18.
Carbon nanotubes (CNTs) supported manganese oxide catalysts were prepared through different thermal treatment routes and used for low-temperature selective catalytic reduction of NO with NH3. The MnOx/CNTs catalyst prepared by calcined the precursor in air at 300 °C showed lower NO conversions than that treated at 250 °C, while it showed higher NO conversions than the one calcined in nitrogen. BET, TGA, XRD and H2-TPR results indicated that CNTs may impose effects on the oxidation state and redox ability of the manganese oxide and hence on the catalytic activity during the calcination process at given temperatures.  相似文献   

19.
Multiwalled carbon nanotubes (CNTs) were fabricated and modified by 3-aminopropyl-triethoxysilane (APTS) solutions to study thermodynamics and regeneration of CO2 adsorption from gas streams. The CO2 adsorption capacities of CNTs and CNT(APTS) decreased with temperature indicating the exothermic nature of adsorption process while the thermodynamic analysis gave low isosteric heats of adsorption, which are typical for physical adsorption. The cyclic CO2 adsorption on CNT(APTS) showed that the adsorbed CO2 could be effectively desorbed via thermal treatment at 120 °C for 25 min while the adsorbed CO2 due to physical interaction could be effectively desorbed via vacuum suction at 0.145 atm for 30 min. If a combination of thermal and vacuum desorption was conducted at 120 °C and 0.145 atm, the time for effectively desorbing CO2 could be further shortened to 5 min. The adsorption capacities and the physicochemical properties of CNT(APTS) were preserved during 20 cycles of adsorption and regeneration. These results suggest that the CNT(APTS) can be stably employed in prolonged cyclic operation and they are thus possibly cost-effective sorbents for CO2 capture from flue gases.  相似文献   

20.
《Ceramics International》2016,42(3):4072-4079
Mesoporous γ-Al2O3 (MA) with agglomerated nanoparticles was successfully synthesized by using aluminum sulfate as inorganic Al resource, and hexamethylene tetramine (HMTA) as precipitant without using any surfactants, via a hydrothermal method. All the experimental processes experienced the hydrolysis, precipitation and calcination steps. The structural and morphological properties of uncalcined and calcined samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry differential thermal gravity (TG-DTG) and N2 adsorption–desorption. The bulk density of the sample is 0.682 cm3  g−1, and the specific surface area is 273.302 m2 g−1. The pore diameters (7.1 nm and 9.7 nm) indicate that a typical bimodal mesoporous structure was formed within MA. In order to tune the structural properties of MA, various kinds of inorganic aluminum sources and precipitating agents were employed to carry out contrast experiments, which leaded to regular variations in the specific surface area (200.898–273.302 m2 g−1), pore volume (0.121–1.327 cm3 g−1) and pore size (3.7–35.9 nm). At the same time, the experimental results also demonstrated that the various kinds of Al resources and precipitants had no effects on the crystal structure of MA. However, the morphologies of samples, such as nanoparticles, short fibers, flower-like and block-shaped, can be controlled effectively. The present study provides a simple and effective approach for preparing MA, and the structural properties of MA can be controlled precisely by carefully choosing aluminum sources and precipitants. The approach of this work not only allows us to investigate the growth mechanism of the final product, but also reduces cost and the environmental pollution effectively than other template methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号