首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出[k]近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,[k]近邻及距离信息,在稀疏子空间模型上,添加[k]近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。  相似文献   

3.
稀疏子空间聚类综述   总被引:25,自引:7,他引:25  
稀疏子空间聚类(Sparse subspace clustering, SSC)是一种基于谱聚类的数据聚类框架. 高维数据通常分布于若干个低维子空间的并上, 因此高维数据在适当字典下的表示具有稀疏性. 稀疏子空间聚类利用高维数据的稀疏表示系数构造相似度矩阵, 然后利用谱聚类方法得到数据的子空间聚类结果. 其核心是设计能够揭示高维数据真实子空间结构的表示模型, 使得到的表示系数及由此构造的相似度矩阵有助于精确的子空间聚类. 稀疏子空间聚类在机器学习、计算机视觉、图像处理和模式识别等领域已经得到了广泛的研究和应用, 但仍有很大的发展空间. 本文对已有稀疏子空间聚类方法的模型、算法和应用等方面进行详细阐述, 并分析存在的不足, 指出进一步研究的方向.  相似文献   

4.
稀疏子空间聚类(Sparse subspace clustering,SSC)算法在处理高光谱遥感影像时,地物的划分精度较低,为了提高地物划分精度,本文提出了一种基于信息熵的加权块稀疏子空间聚类算法(Weighted block sparse subspace clustering algorithm based on...  相似文献   

5.
6.
张琦  郑伯川  张征  周欢欢 《计算机应用》2022,42(4):1148-1154
针对稀疏子空间聚类(SSC)方法聚类误差大的问题,提出了基于随机分块的SSC方法。首先,将原问题数据集随机分成几个子集,构建几个子问题;然后,采用交替方向乘子法(ADMM)分别求得几个子问题的系数矩阵,之后将几个系数矩阵扩充成与原问题一样大小的系数矩阵,并整合成一个系数矩阵;最后,根据整合得到的系数矩阵计算得到一个相似矩阵,并采用谱聚类(SC)算法获得原问题的聚类结果。相较于稀疏子空间聚类(SSC)、随机稀疏子空间聚类(S3COMP-C)、基于正交匹配追踪的稀疏子空间聚类(SSCOMP)、谱聚类(SC)和K均值(K-Means)算法中的最优算法,基于随机分块的SSC方法将子空间聚类误差平均降低了3.12个百分点,且其互信息、兰德指数和熵3个性能指标都明显优于对比算法。实验结果表明基于随机分块的SSC方法能降低子空间聚类误差,改善聚类性能。  相似文献   

7.
主动学习已经被证明是一种成功的机器学习算法,最主要的缺点是它只注重样本的标签信息而忽略了样本的分布信息.因此带来的后果就是稳定性差,容易陷入局部最优解,同时对初始样本的选择非常敏感.论文将稀疏子空间聚类与主动学习相结合,首先利用稀疏子空间聚类找到原始数据的分布信息,然后利用该信息指导主动学习选取初始样本,使样本标注更加有效,提高了主动学习的效率,同时降低了主动学习对初始样本的敏感度.最后通过多组仿真实验证明,本方法可以有效的改善主动学习的性能.  相似文献   

8.
王丽娟    丁世飞  夏菁 《智能系统学报》2023,18(2):399-408
本文主要研究如何通过挖掘多视图特征的多样性信息来促进多视图聚类,提出了基于多样性的多视图低秩稀疏子空间聚类算法。该方法直接将视图多样性概念应用于多视图低秩稀疏子空间聚类算法框架中,确保不同视图的子空间表示矩阵的多样性;为了实现多个视图聚类一致性同时达到提高聚类性能的目标,在该框架中引入谱聚类算法共同优化求解。通过对3个图像数据集的实验验证了该算法的有效性,同时其聚类的性能优于已有的单视图及多视图算法。  相似文献   

9.
10.
块对角表示(BDR)模型可以通过利用线性表示对数据有效地进行聚类,却无法很好地利用高维数据常见的非线性流形结构信息。针对这一问题,提出了基于近邻图改进的块对角子空间聚类(BDRNG)算法来通过近邻图来线性拟合高维数据的局部几何结构,并通过块对角约束来生成具有全局信息的块对角结构。BDRNG同时学习全局信息以及局部数据结构,从而获得更好的聚类表现。由于模型包含近邻图算子和非凸的块对角表示范数,BDRNG 采用了交替最小化来优化求解算法。实验结果如下:在噪声数据集上,BDRNG能够生成稳定的块对角结构系数矩阵,这说明了BDRNG对于噪声数据具有鲁棒性;在标准数据集上,BDRNG的聚类表现均优于BDR,尤其在人脸数据集上,相较于BDR,BDRNG的聚类准确度提高了8%。  相似文献   

11.
多视图子空间聚类是一种从子空间中学习所有视图共享的统一表示, 挖掘数据潜在聚类结构的方法. 作为一种处理高维数据的聚类方法, 子空间聚类是多视图聚类领域的研究热点之一. 多视图低秩稀疏子空间聚类是一种结合了低秩表示和稀疏约束的子空间聚类方法. 该算法在构造亲和矩阵过程中, 利用低秩稀疏约束同时捕捉了数据的全局结构和局部结构, 优化了子空间聚类的性能. 三支决策是一种基于粗糙集模型的决策思想, 常被应用于聚类算法来反映聚类过程中对象与类簇之间的不确定性关系. 本文基于三支决策的思想, 设计了一种投票制度作为决策依据, 将其与多视图稀疏子空间聚类组成一个统一框架, 从而形成一种新的算法. 在多个人工数据集和真实数据集上的实验表明, 该算法可提高多视图聚类的准确性.  相似文献   

12.
现有的子空间聚类方法大多只适用于单层网络,或者仅对多层网络中每层的聚类结果简单地进行平均,未考虑每层网络中包含信息量不同的特点,致使聚类性能受限.针对该问题,提出一种面向多层网络的稀疏子空间聚类方法.将距离正则项和非负约束条件集成到稀疏子空间聚类框架中,从而在聚类时能够同时利用数据的全局信息和局部信息进行图学习.此外,...  相似文献   

13.
稀疏子空间聚类是利用子空间并集中数据向量的稀疏表示,从而将数据划分到各自子空间,该类方法关键是求出最优稀疏解。文中采用交替方向法求稀疏解,交替方向法把复杂问题分解成简单的、有效求解的子问题,达到最优速度。在交替方向法求解过程中,通常惩罚因子是恒定不变的。文中提出一种惩罚因子参数自调整策略,根据每次迭代信息,调整惩罚因子参数。基于运动分割数据和Hopkins数据库实验,结果表明在迭代次数和运算时间上,稀疏子空间聚类的交替方向法及其惩罚参数自调整策略比传统算法有很大提高,而且对噪声数据也非常有效。  相似文献   

14.
为了获得结构更加合理的仿射矩阵,提出了一种基于[k]-近邻与局部相似度的稀疏子空间聚类算法。该算法首先计算每个点的[k]-近邻,并对其用[k]-近邻数据点进行线性表示,使仿射矩阵在整体稀疏的情况下保证局部的强线性关系。基于图论知识,利用数据的实际分布情况对仿射矩阵进行约束,使仿射矩阵进一步合理地等价于待进行谱聚类的相似矩阵。在人造数据集、随机生成的子空间数据集、图像数据集以及真实数据集上进行了实验,结果表明该算法是有效的。  相似文献   

15.
稀疏关系表示(SRR)是一种性能良好的子空间聚类算法,其利用一个数据样本和所有样本间的邻域关系作为新特征来学习自表示系数,由自表示系数矩阵构建相似度矩阵并通过谱聚类得到聚类结果。同时考虑相似度矩阵的稀疏性和聚集性,在SRR算法基础上提出一个判别性增强的稀疏子空间聚类模型。对邻域关系矩阵的自表示矩阵采用平方F范数代替SSR中的核范数,降低模型求解难度,并在邻域关系矩阵的自表示矩阵中引入新的正则项,保证自表示矩阵的类间判别性和邻域关系矩阵的类内聚集性,进一步优化聚类性能。实验结果表明:与SSC、LRR、LSR、BDR-B、SRR等模型相比,该模型具有较好的聚类性能;在MNIST、USPS、ORL数据集上,聚类错误率较SRR模型分别下降9.6、14.1、3.8个百分点;在Extended Yale B数据集上,针对2、3、5、8、10类聚类问题的聚类错误率较SRR模型分别下降0.39、0.72、1.32、2.73、3.28个百分点。  相似文献   

16.
为提高谱聚类算法的鲁棒性,基于稀疏编码在图的构造中提出一种改进L1稀疏表示图模型。每个样本表示为数据集中其他样本的稀疏线性组合,得到稀疏图的边权表示,所构造的稀疏图对数据噪声有很好的鲁棒性,同时能够反映数据局部线性结构。采用稀疏矩阵表示,该方法能够大大降低存储量和计算量,因而对于处理较大规模问题有着较好的可伸缩性。人工数据和实际数据上的谱聚类实验验证了该算法的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号