首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对FCM算法在图像分割时存在选取初始聚类中心不佳与算法抗噪性差的问题,提出一种融合空间信息的改进FCM图像分割算法;首先采用了直方图算法和LOF算法自适应地选取初始聚类中心,之后使用马尔科夫随机场得到先验概率改进目标函数,使用修正隶属度矩阵的方法改进算法流程,最后使用改进算法进行图像分割;为验证该算法性能,使用Berkeley图像数据集作为实验数据,选取Dice系数、JS系数、SA系数、PSNR指数、运行时间及迭代次数作为评价标准;实验结果表明,该算法能够获取更优初始聚类中心,在处理不同噪声图像上有更好的鲁棒性。  相似文献   

2.
提出一种基于马尔科夫随机场模型的火焰图像分割算法。将由系统装置获取的原始火焰图像从RGB空间变换到HSV颜色空间,以提取颜色特征。分别对原始图像建立Potts标记场模型和有限正态混合观测场模型(FGMM),结合颜色特征,运用贝叶斯估计和ICM算法,计算最大后验概率(MAP),并完成图像分割。实验证明,该算法可以有效地分割炉膛火焰图像,为之后的工作奠定了基础。  相似文献   

3.
随着合成孔径雷达(Synthetic aperture radar)技术的发展,合成孔径雷达技术常应用于地表检测、灾害检测、环保检测工作等方面.SAR图像的分割处理也变得尤为重要.因为马尔科夫随机场(Markov Random Field)结合了邻域像素的空间相关性,所以基于MRF的图像分割法在SAR图像方面得到了广泛...  相似文献   

4.
FLICM算法是一种基于FCM框架的有效的分割方法。然而,它对于强噪声图像的分割仍然不够准确。本文使用MRF模型的局部先验概率,对FLICM算法从两方面进行了改进。首先,在计算模糊因子时,使用先验概率对距离函数进行加权。改进的模糊因子考虑了更大范围的邻域约束,从而使算法受噪声的影响程度减弱。其次,在分割阶段,进一步使用局部先验概率对FLICM算法的隶属度进行加权。使用改进后的隶属度进行标记判决,使得每一标记的确定需要考虑邻域标记的影响,使分割结果的区域性更好。利用新算法对模拟影像和真实影像进行了分割实验,并与几个考虑空间信息约束的FCM分割算法进行了对比分析,结果证明该算法具有更强的抗噪性能。  相似文献   

5.
龚劬  廖武忠  卢力  余维 《计算机工程》2012,38(8):192-194
研究基于图论的最短路径算法与加权直方图方法,结合快速模糊聚类思想,提出一种改进的快速模糊C-均值(FCM)图像分割算法。利用最短路径算法对图像进行初始化处理,使处理后的灰度值准确反映邻域像素对原像素的影响。通过加权直方图改变灰度变化剧烈区域像元在图像分割中的影响程度,并自适应寻找初始聚类中心。实验结果表明,该算法能快速准确地分割图像,具有较强的抗噪性。  相似文献   

6.
由于传统图像分割方法对噪声的敏感性和检测结果的不连续性等问题导致图像分割精度较低,提出一种基于多层马尔科夫随机场模型融合的图像分割方法。首先分别通过模糊C均值聚类(FCM)方法和马尔科夫随机场(MRF)方法得到两个分割效果较差的图像,随后运用多层马尔科夫随机场模型的融合特性将两个传统方法得到的分割结果进行融合。该方法运用多层马尔科夫随机场融合方法引入邻域内像素间相关性和各层间的联系,并且在实验中得出与两个传统方法相比较更细致和精确的结果。实验结果表明,多层马尔科夫随机场模型的融合方法可以将两个传统分割方法的结果较好地融合,并且得到更加精确的结果。  相似文献   

7.
作为城区主要目标之一,建筑物的检测和提取至关重要,而利用图像分割将建筑物从背景中分离出来是后续处理的基础。传统马尔科夫随机场(Markov Random Field, MRF)模型对合成孔径雷达(Synthetic Aperture Radar, SAR)图像进行建筑物分割时只利用了灰度信息,因此对灰度不均匀目标分割完整性较差,且利用最小能量准则分割时未考虑两部分随机场能量的相互关系,从而导致分割结果不能同时兼顾区域一致性与边缘细节性。为此,研究提出一种改进MRF的SAR图像建筑物分割方法。首先,通过在观测场引入由巴氏距离加权的纹理特征,实现对灰度不均匀建筑物的完整提取;其次,在两部分随机场能量中引入随迭代次数变化的权重,实现在建筑物密集区域保持边缘平滑的同时更好地抑制噪声。为了验证算法的有效性和实用性,对不同场景的SAR图像进行处理,结果表明:所提算法在不同场景中均能得到更好的分类正确率和Dice系数。  相似文献   

8.
该文整合纹理方面的信息,实现了基于马尔科夫场(MRF)的图像快速分割。通过图像纹理特征利用Gabor滤波器数据特征分量,通过马尔科夫算法将像素分类获得分割结果。  相似文献   

9.
与模糊c均值(FCM)算法相比较,可能性C均值(PCM)聚类算法具有更好的抗干扰能力。但PCM聚类算法对初始化条件很敏感,在聚类的过程中很容易导致聚类结果一致性,并且没有考虑到像素的空间信息,用在图像分割尤其是多目标图像分割上效果极不稳定。在PCM算法的基础上,利用Markov随机场中的邻域关系属性,引入先验空间约束信息,建立包含灰度信息与空间信息的新聚类目标函数,提出马尔可夫随机场与PCM聚类算法相融合的图像分割新算法(MP.CM算法)。实验结果表明,在多目标图像分割上利用MPCM算法可以取得比PCM更好的分割效果。  相似文献   

10.
刘芳  刘东升  桂志国 《计算机工程》2011,37(1):224-225,228
针对常规的反锐化掩膜方法对图像进行增强时会放大噪声的问题,提出一种基于马尔科夫随机场理论的图像锐化方法,将Thin Plate先验能量函数引入到反锐化掩膜方法中。实验结果表明,该方法在突出图像边缘细节的同时,可有效抑制噪声。主观视觉效果和客观评价结果表明,该方法的处理效果较好。  相似文献   

11.
基于模糊C均值与Markov随机场的图像分割   总被引:3,自引:1,他引:3       下载免费PDF全文
蔡涛  徐国华  徐筱龙 《计算机工程》2007,33(20):34-36,3
针对传统模糊C-均值(FCM)图像分割算法没有考虑图像空间连续性的缺点,提出一种改进的空间约束FCM分割算法。该算法引入了Markov随机场理论中类别标记的伪似然度近似策略,将像素特征域相似性同空间域相邻性有机地结合起来,给出了新的像素样本聚类目标函数。实验证明,该算法能大大提高分割性能并改善分割的视觉效果。  相似文献   

12.
提出了一种基于混合高斯模型的马尔可夫随机场CT图像分割方法.此方法根据工业CT图像的特点,建立混合高斯逼近的图像灰度统计模型;用混合高斯模型作为Markov随机场的先验模型,提出混合高斯Markov随机场分割模型.实验表明,该方法较单高斯模型有很大的改善,对工业CT图像分割效果好.  相似文献   

13.
基于图像片马尔科夫随机场的脑MR图像分割算法   总被引:2,自引:0,他引:2  
传统的高斯混合模型(Gaussian mixture model,GMM)算法在图像分割中未考虑像素的空间信息,导致其对于噪声十分敏感.马尔科 夫随机场(Markov random field,MRF)模型通过像素类别标记的Gibbs分布先验概率引入了图像的空间信息,能较好地分割含有噪声的图 像,然而MRF模型的分割结果容易出现过平滑现象.为了解决上述缺陷,提出了一种新的基于图像片权重方法的马 尔科夫随机场图像分割模型,对邻域内的不同图像片根据相似度赋予不同的权重,使其在克服噪声影响的同时能 保持图像细节信息.同时,采用KL距离引入先验概率与后验概率关于熵的惩罚项,并对该惩罚项进行平滑,得到 最终的分割结果.实验结果表明,算法具有较强的自适应性,能够有效克服噪声对于分割结果的影响,并获得较高的分割精度.  相似文献   

14.
针对传统小波域马尔可夫随机场图像分割算法的纹理图像分割能力的不足,提出一种将非下采样Brushlet变换和马尔可夫随机场相结合的纹理图像分割方法。用非下采样Brushlet变换作为图像分割的特征场,有效地提取纹理图像中的高维奇异信息;利用高斯马尔可夫模型提取特征场的参数,考察图像中的光谱信息以及像素点的空间相关性对分割结果的影响。实验表明,本文算法可以有效地实现纹理图像分割,在检测纹理方向信息和区域一致性上较传统算法有较大的提高。  相似文献   

15.
基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,其具有描述简洁、易于实现、分割效果好等优点,但也存在运算时间过长等问题,本文提出了一种新的快速FCM图像分割算法,该算法首先将图像数据划分成一定数量的子集,然后利用区域粗糙度标记所有子集,最后根据子集质心及其权重进行模糊聚类图像分割,仿真实验结果表明,该算法能够以保证图像分割质量为前提,大幅度提高FCM图像分割速度,故具有一定应用价值。  相似文献   

16.
基于蚁群算法的图像分割方法   总被引:20,自引:0,他引:20  
蚁群算法是一种具有离散性?并行性?鲁棒性和模糊聚类能力的进化方法?根据数字图像的离散性特点,首先从模糊聚类角度出发,将蚁群算法引入图像分割中,综合考虑像素的灰度?梯度及邻域特性进行特征提取?然后,针对蚁群算法循环次数多,计算量大的问题,设置启发式引导函数和初始聚类中心进行改进?详细阐述特征提取?初始聚类中心设置和模糊聚类流程?实验证明改进蚁群算法可以快速准确地分割出目标,是一种有效的图像分割方法  相似文献   

17.
文章提出了脑部核磁共振血管造影(Magnetic Resonance Angiography, MRA)的全自动分割方法,该方法 有效增强了现有的基于 Markov 随机场(Markov Random Field, MRF)的分割技术。现有的三维 Markov 分割模型通 常面临的挑战是:(1)低级 MRF 模型参数初始化不够准确;(2)普通的 MRF 邻域系统无法探测精细的血管结构。 针对这两类问题,分别提出了基于多尺度滤波响应阈值分析和多模式邻域系统进行解决,使得 MRF 模型的血管 分辨率提高到 2 个体素的细小血管。实验中,低级模型参数的精确估计采用了最大期望算法,高阶 MRF 参数的 估计采用最大伪似然估计方法;通过三维仿真数据和实际脑部 MRA 数据进行验证,分割结果显示了较小的全局 误差  相似文献   

18.
马尔可夫随机场在低信噪比图像恢复中的应用   总被引:1,自引:0,他引:1  
提出一种基于马尔可夫随机场的二值图像恢复算法。该算法在迭代计算中对ISING模型中耦合系数J动态修改,是一种求解最大后验概率(MAP)的随机松弛算法,该算法兼顾条件迭代(ICM)算法计算量少和模拟退火(SA)算法全局收敛的优点。利用该方法恢复被加性高斯噪声污染的低信噪比图像,取得良好的实验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号