首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对重型装备制造业中重型静压轴承承载特性的研究,考虑到不同工况下间隙油膜厚度对静压轴承承载能力及压力分布的影响,建立了静压轴承间隙油膜三维模型及边界条件,利用CFD(computational fluid dynamic)原理,应用动网格技术和FLUENT软件,探讨静压轴承转速为10r/min以及在空载0 t、有载40 t、满载150 t不同工况下,油膜厚度变化对压力场以及油腔压力值的影响规律。结果表明:油腔压力随着间隙油膜厚度的减小而增大,当油膜减小到一定值时,油腔压力显著增加,油膜承载能力显著增强。  相似文献   

2.
为研究变形对有限长轴颈轴承弹流润滑特性的影响,利用Winkler弹性基础模型对其进行分析,使用压力和膜厚双重迭代方法进行数值模拟求解。其结果表明:载荷越大,刚性轴承与柔性轴承的油膜压力和厚度差异越大;在轴承表面变形的条件下,随载荷的增大,偏心率随转速增大而减小的幅度变小,偏位角随转速增大而增大的幅度亦变小;随转速的增大,偏心率随载荷增大而增大的幅度变大,偏位角随载荷增大而减小的幅度亦变大。此外,还研究了在定载荷条件下轴承宽度、厚度、润滑油黏度、间隙等参数对油膜压力、厚度及破裂位置的影响规律。该研究成果可为轴颈轴承的设计及其性能计算提供相应的理论参考。  相似文献   

3.
乏油状态下准双曲面齿轮传动润滑机理分析   总被引:1,自引:0,他引:1  
在工程实际中,准双曲面齿轮不可避免地因润滑剂供给不足导致乏油问题,鉴于此,综合考虑了啮合区接触几何、粗糙形貌、入口区供油量、啮合界面速度矢量任意性等因素,建立了乏油状态下准双曲面齿轮传动界面任意速度矢量润滑分析模型,开展了乏油分析模型结果与文献实验数据的对比研究,数值分析了不同入口区供油量条件下准双曲面齿轮传动界面啮入点、啮合中点和啮出点的油膜演变规律,探讨了转速对不同供油量条件下传动界面润滑性能的影响。结果表明:乏油分析模型结果与文献实验数据取得了良好的一致性;随着入口区供油量的减小,3个啮合点油膜厚度的差异逐渐减小,当供油量减小到某一值时,3个啮合位置的油膜厚度基本一致;在不同的供油量下,转速对润滑状态的影响较为显著,油膜厚度随着转速的增加而升高,但是,转速升高到某一值时,乏油条件下的油膜厚度值将趋于稳定,而充分供油条件下的油膜厚度值将会继续增大。  相似文献   

4.
面齿轮等温点接触弹流润滑分析   总被引:1,自引:1,他引:0  
建立面齿轮等温点接触弹流润滑模型,通过F O R T R A N语言编程计算面齿轮的油膜厚度和压力;分析小齿轮转速、面齿轮所受载荷和润滑油黏度对面齿轮润滑特性的影响。研究结果表明:转速和润滑油黏度越大,油膜厚度也越大,而载荷越大油膜厚度越小;二次压力峰随转速和润滑油黏度的增大而越明显,但随载荷的增大而趋于消失。  相似文献   

5.
以离心式压力雾化喷嘴为研究对象,对不同环境条件下喷嘴雾化特性的影响进行了数值模拟研究,获得了不同环境压力和环境温度对油膜厚度和雾化锥角等雾化特性参数的影响规律。利用FLUENT软件,在喷油压力4.0 MPa、燃油温度100 ℃的条件下,对环境压力由0.1 MPa升至3.0 MPa、环境温度由-50 ℃升至400 ℃过程中的燃油雾化特性进行了数值计算。结果表明,当环境压力一定时,环境温度增加,气体密度减小,燃油蒸发作用加剧,气相燃油比例增大,雾化效果增强;当环境温度一定时,环境压力增加,气体密度增大,油膜厚度增大,液相燃油比例增大,不利于燃油雾化。  相似文献   

6.
同步器同步机理建模与结构影响因素分析   总被引:1,自引:0,他引:1  
针对同步器结合过程,利用平均雷诺方程和微凸体摩擦原理,建立了油膜压力、微凸体接触力、同步环轴向力、同步力矩4个数学模型,运用4-Runge-Kutta法对油膜厚度和转速差进行耦合数值求解,分析了同步器结合过程油膜厚度、转速差、粘性剪切转矩、粗糙摩擦转矩以及总转矩的变化规律.对同步器结合过程数学模型进行试验验证后,利用所建模型研究了同步环宽度、同步环半径、摩擦锥角以及摩擦材料厚度等因素对同步器结合过程的影响规律.结果表明:同步环宽度增大,粘性转矩和粗糙接触转矩增大,油膜厚度下降速率减缓,粗糙接触转矩响应延迟,同步时间增加;同步环半径增大,粘性转矩和粗糙接触转矩增大,油膜厚度下降速率加快,同步时间缩短;同步环摩擦锥角增大,粘性转矩增大,粗糙接触转矩减小,转速差下降速率变缓,同步时间增加;摩擦材料厚度增大,粗糙接触转矩相应加快,油膜厚度下降速率增大,最小油膜厚度减小,同步时间缩短.  相似文献   

7.
为了研究Sommerfeld数对轴承动力学特性的影响,建立了基于短轴承理论的滑动轴承的非线性油膜力模型,得到了Sommerfeld数对偏心率、最小油膜厚度、润滑油流量、温升、刚度系数、阻尼系数的影响规律。在对二维油膜压力分析时发现存在一个Sommerfeld数,当转速低于某个临界值时临界转速对最大油膜压力影响较大,当转速高于这个临界值时临界转速对最大油膜压力影响不大。  相似文献   

8.
液体动压滑动轴承对汽轮发电机转子系统的动态性能和运行稳定性有着至关重要的影响.基于润滑流体两相流理论,运用Fluent建立了滑动轴承的稳流和湍流三维CFD分析模型.仿真分析不同转速、进油压力、载荷和偏心率等关键参数对滑动轴承的油膜压力分布、油膜破裂和气穴分布特征等动态特性的影响规律.结果表明随着转速的增加,正、负压区的面积大小成反比变化,偏心率对油膜的动态特性影响较大.在转子高速运转时,适当增加油口进油压力以平衡转速致使油膜气化比例的增加,从而防止油膜破裂,有利于提高油膜的承载力和转子系统的运行稳定性.计算结果为运转状态下液体动压滑动轴承的动态性能分析提供了参考数据.  相似文献   

9.
油膜刚度影响静压推力轴承振动幅值和承载能力,严重时将导致静压推力轴承摩擦副接触失效,影响立式数控装备的加工精度和运行稳定性。为了避免此现象发生,本文根据润滑理论和摩擦学原理对恒流环形腔多油垫静压推力轴承油膜刚度进行研究,分析润滑油粘度、工作台旋转速度和承载重量等因素对油膜刚度的影响规律,并进行了实验验证。结果表明:润滑油粘度对油膜刚度有一定的影响,考虑粘度变化时油膜刚度大,计算结果相对精确。空载和承载工况条件下,随着旋转工作台转速增加,间隙油膜变薄,油膜刚度变大。相同旋转速度条件下,承载时油膜厚度小于空载时油膜厚度,承载时油膜刚度大于空载时油膜刚度。理论计算结果与实验值吻合较好,所得结论可为静压推力轴承油膜厚度控制系统设计提供理论依据,提高立式数控加工装备运行稳定性。  相似文献   

10.
冷轧界面油膜厚度对表面形貌转印过程的影响   总被引:1,自引:0,他引:1  
为研究冷连轧过程中接触界面润滑油膜厚度对表面形貌转印过程的影响,在跟踪实际生产中带钢表面形貌的基础上,结合轧辊表面磨损形貌以及润滑分析确定的界面油膜分布,建立真实表面接触的带钢形貌生成模型,用跟踪测量轧辊服役期内生产带钢表面的粗糙度对模型进行验证.利用模型分析在不同磨损状态下电火花毛化轧辊油膜厚度对转印形成带钢表面形貌的影响规律.结果表明:轧辊表面处于不同磨损状态时,带钢表面Ra的转印率随着油膜厚度的增加而减小;轧辊表面磨损后转印形成的带钢表面P_c的转印率在油膜厚度增加的初期基本保持不变,而后急剧减小.  相似文献   

11.
载荷和供油压力对浮环轴承润滑影响的理论研究   总被引:1,自引:0,他引:1  
针对浮环轴承双层间隙的结构特点,建立了其润滑模型.在考虑供油压力和油膜破裂的情况下,通过求解基于长轴承理论的雷诺方程,得到了内外油膜周向压力分布情况,并推导了油膜力的解析表达式.在给定浮环轴承结构参数的情况下,利用Matlab软件对润滑模型进行了计算和仿真.分析了诸如载荷、供油压力、转子转速等参数对浮环轴承静平衡位置、油膜连续性以及轴承内间隙润滑的影响.得出了较大的外载荷会导致较大的外油膜偏心率和外油膜空穴区扩大,而供油压力主要影响外油膜的偏位角的结论,并指出载荷的加大会使进入内间隙润滑油量在很宽的转速范围内减小,有可能会导致内膜贫油情况的发生,而增大润滑油注油压力会有效缓解这一现象的发生.  相似文献   

12.
为了研究工况参数对湿式离合器接合特性的影响规律,基于Navier-Stokes方程、KE粗糙接触理论和传热理论,针对含沟槽湿式离合器建立接合特性综合数值模型. 利用自主研制的离合器试验装置,针对接合压力、润滑油(ATF)温度、相对转速、渗透性和沟槽等影响因素进行正交试验. 结果表明,接合压力不仅影响接合时间且对扭矩有影响,压盘接触瞬间的扭矩抖动取决于接合压力稳定性,接合完成瞬间的扭矩抖动是由动静摩擦系数差异造成的;润滑油温升高,黏度降低使粗糙峰接触延迟造成接合时间增长,接合扭矩减小;转速越高,接合时间越长;渗透性越高,油膜厚度下降越快,接合响应速度越快;沟槽宽度越大,接合扭矩的幅值越小,接合时间越长. 初始油膜厚度越大,接合初始阶段的油膜剪切扭矩越小.  相似文献   

13.
考虑轴受力产生变形引起的轴倾斜,采用流固耦合方法,直接求解Navier-Stokes方程,对滑动轴承系统中轴和润滑油膜进行三维瞬态分析,同时求解流场和固体域,得到油膜动态压力分布、轴心的运动轨迹和不同转速下油膜厚度分布.结果表明,轴倾斜使油膜压力分布和轴心轨迹变化明显,最小油膜厚度减小,流场压力峰值增大.通过对滑动轴承的三维瞬态分析可以预测轴承工作过程中实时的轴心轨迹、压力分布、油膜厚度等润滑特性,为滑动轴承的优化设计提供参考.  相似文献   

14.
基于蜗杆传动的弹流润滑,建立了蜗杆传动的理论模型.采用复合直接迭代法求解最小油膜厚度,并利用MATLAB软件对最小油膜厚度进行了计算,探讨了蜗轮蜗杆的关键性参数对油膜厚度的影响.研究结果表明:在数值选取范围内,最小油膜厚度随蜗杆分度圆导程角、蜗杆头数、转速及蜗轮直径的增大而增大,随蜗杆输入功率和载荷系数的增大而减小; 蜗杆齿顶圆上的最小油膜厚度比齿根圆上最小油膜厚度大; 将本文的强度设计公式(5)和润滑设计公式(8)进行联立计算,得到摩擦学设计公式.  相似文献   

15.
滤波减速器转臂轴承混合润滑性能分析   总被引:1,自引:1,他引:0  
综合考虑滤波减速器转臂轴承的载荷、接触几何、真实表面粗糙度等因素的影响,建立了转臂轴承的混合润滑数值分析模型,分析了额定工况和不同转速、温度下轴承接触区的油膜比厚、接触载荷比和下表面应力等参数,并在此基础上探讨了沟曲率半径和表面粗糙度对转臂轴承混合润滑特性的影响。结果表明:提高转速可使接触区由边界润滑进入全膜润滑,润滑性能改善;环境温度升高将导致润滑剂粘度下降,致使润滑状态恶化,下表面应力增大;内沟曲率半径增加导致内滚道接触区下表面应力增大,油膜比厚先减后增再单调递减;外沟曲率半径增加导致外滚道接触区下表面应力持续增大,油膜比厚先略有上升后一直减小;减小表面粗糙度改善界面润滑状态,但过小时并不能减少干接触,反而还会增加下表面应力和提高加工成本。  相似文献   

16.
双圆弧谐波减速器共轭啮合区混合润滑分析   总被引:2,自引:0,他引:2  
为了给轮齿啮合区的加速寿命试验提供理论依据,更好地指导产品优化设计,以某型号谐波减速器为分析对象,基于包络理论求出柔轮与刚轮的齿廓方程,分析了啮合点的曲率半径、卷吸速度以及啮合区受载情况,综合考虑啮合区的宏观几何、真实表面粗糙度等因素,建立了柔轮与刚轮啮合区的混合润滑模型,通过分析润滑区膜厚比、摩擦因数等参数,定量研究了转速和温度对润滑性能的影响.结果表明:转速越高,平均油膜厚度和膜厚比越大,接触载荷比和接触面积比越小,润滑性能越好.当转速高于2 200 r/min时,啮合区由边界润滑变为混合润滑,接触载荷比和接触面积比较50 r/min时减小90%以上,摩擦因数减小一半以上,将转速控制在2 200 r/min以上有利于改善润滑状况;随着啮合区温度的升高,平均油膜厚度和膜厚比逐渐减小,接触载荷比和接触面积比逐渐增大,润滑状况逐渐变差.温度为60℃时,摩擦因数较10℃增加一倍以上,接触载荷比和接触面积比增加一倍以上,需严格控制谐波减速器工作温度在60℃以下.  相似文献   

17.
探索润滑油与理想气体混合介质下齿轮箱密封泄漏机理,分析转子旋转效应和热效应对迷宫密封泄漏特性的影响,研究旋转效应和热效应造成密封系统转子结构变形和流场变化导致密封性能变化的影响规律. 研究结果表明:旋转效应和热效应减小了迷宫密封间隙宽度,其中,热效应膨胀变形量高于旋转效应离心变形一个量级;转子转速存在一个阈值(4 000 r/min),当转速超过阈值时,迷宫密封泄漏量明显降低,当转子转速为10 000 r/min时,相对无旋转工况,泄漏量下降了18.5%;润滑油温度升高,黏度降低,密封结构的泄漏量呈近线性增大,当温度为140 °C时,相比温度为40 °C工况,泄漏量上升了58.6%;旋转效应和热效应造成流场变化是影响密封系统泄漏特性的主要因素,结构变形是次要因素.  相似文献   

18.
高参数工况下的气膜摩擦力对干气密封性能的影响不可忽视。基于密封系统和动静环的结构特点,建立了润滑气膜计算域模型,使用ICEM划分网格,采用Fluent软件数值模拟获得气膜压力分布和速度分布,最后通过牛顿内摩擦定律计算得到润滑气膜摩擦系数。结果表明,槽型参数不变,润滑气膜摩擦系数随转速的增大而增大,随介质压力及平均气膜厚度的增大而减小;工况参数不变,气膜摩擦系数随根径的增大而增大,随槽数及槽深的增大而减小,且在75°~76°螺旋角范围内较为稳定。  相似文献   

19.
流体普遍存在着非牛顿特性,因此对润滑油所表现出来的非牛顿特性进行研究显得尤为重要。应用新型三叉式万向联轴器的润滑模型,假定在新型三叉式万向联轴器工作时润滑油的温度和与其相接触的联轴器表面的温度是处处相等的,并将润滑油假设为Ree-Eyring型流体,利用多重网格法进行数值分析,进而研究等温非牛顿流体条件下新型三叉式万向联轴器的润滑特性。探讨有效半径、频率、振幅、简化弹性模量、载荷和黏度等因素对新型三叉杆万向联轴器润滑特性的影响,分析了这些因素对联轴器在润滑过程中的压力、油膜厚度、最小油膜厚度、中心油膜厚度以及最大压力的影响,以便对它的润滑特性进行改进。  相似文献   

20.
湿式离合器的接合过程直接影响离合器的使用寿命及其工作性能。基于流体力学理论以及粗糙表面的弹性接触理论,建立了湿式离合器接合过程中油膜厚度和传递转矩的数学模型,利用Runge-Kutta数值积分法对数学模型进行耦合求解,得到控制油压、润滑油黏度以及摩擦材料渗透性对油膜厚度和离合器传递转矩的影响规律。结果表明:提高控制油压能够有效提升离合器接合过程中的传递转矩,并且能够缩短离合器的接合时间;随着润滑油黏度的增大或摩擦材料渗透性的减小,离合器接合过程中传递扭矩的响应速度变慢,这将会延长离合器的接合时间;润滑油黏度和摩擦材料渗透性对离合器接合过程的挤压和压紧阶段传递的转矩影响较大,但对粗糙接触阶段传递的转矩影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号