首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在传统的协同过滤推荐算法中, 相似度计算是算法中的核心, 然而之前的计算方式过于依赖用户的评分, 没有考虑到用户本身的属性以及信任度, 并且没有对恶意用户进行区分, 为解决上诉问题, 本文将一种改进的新型信任关系度量方式融入到相似度计算中, 这种新型的方法不仅考虑了恶意用户的影响, 并且有效地结合用户本身的属性. 另外, 文章就热点问题对相似度计算也进行了改进. 算法最终利用初始用户聚类不断迭代得到相邻用户, 有效的消除了冷启动和数据稀疏的问题. 实验部分, 通过与其它几种推荐算法的比较可以证明, 提出的算法能够有效提升推荐准确度.  相似文献   

2.
推荐系统是针对如今信息过载现象的一种极为有效的方法,而协同过滤算法自提出以来就在推荐系统中得到了广泛的应用,但是这种方法也存在着推荐精度不高、难以处理稀疏数据等缺点。对此提出一种结合类别偏好的协同过滤推荐算法。在原算法计算用户相似度的基础上,结合用户类别偏好的相似度来计算近邻,从而得到推荐结果。实验结果表明,该方法能较为有效地结合用户的类别偏好,与传统的协同过滤算法相比,有更好的推荐效果。  相似文献   

3.
针对电子商务系统中传统协同过滤推荐算法面临的稀疏性、准确性、实时性等问题,提出了一种基于用户谱聚类的协同过滤推荐算法。首先利用非负矩阵分解的方法对原始稀疏评分矩阵进行平滑处理,然后利用改进相似度的谱聚类方法将用户聚类,最后在用户所属类中寻找最近邻并产生推荐。用户谱聚类过程可离线完成,加快了在线推荐速度。在数据集MovieLens上的实验结果表明,该算法在平均绝对偏差、召回率、准确率等方面都有了较大改善,提高了推荐质量。  相似文献   

4.
针对传统协同过滤算法中数据稀疏造成推荐准确度低以及K-means聚类算法需要预先确定聚类个数的问题,提出自适应K-means聚类算法(SKCA)。引入物理学中的拓扑势场理论,利用拓扑势值进行用户重要性表示并获得用户影响范围,结合改进K-means算法完成用户聚类并得到各类代表用户,目标用户通过与各代表用户进行用户相似度计算确定最优代表用户,在最优代表用户场域内使用协同过滤算法进行推荐。与其它算法对比的实验结果表明,SKCA在准确率、F值及运行效率上都有提升,有效缓解了数据稀疏的影响。  相似文献   

5.
针对传统的协同过滤算法忽略了用户兴趣源于关键词以及数据稀疏的问题,提出了结合用户兴趣度聚类的协同过滤推荐算法。利用用户对项目的评分,并从项目属性中提取关键词,提出了一种新的RF-IIF (rating frequency-inverse item frequency)算法,根据目标用户对某关键词的评分频率和该关键词被所有用户的评分频率,得到用户对关键词的偏好,形成用户—关键词偏好矩阵,并在该矩阵基础上进行聚类。然后利用logistic函数得到用户对项目的兴趣度,明确用户爱好,在类簇中寻找目标用户的相似用户,提取邻居爱好的前◢N◣个物品对用户进行推荐。实验结果表明,算法准确率始终优于传统算法,对用户爱好判断较为准确,缓解了数据稀疏问题,有效提高了推荐的准确率和效率。  相似文献   

6.
邵超  宋淑米 《计算机科学》2021,48(z1):240-245
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量.  相似文献   

7.
邵超  宋淑米 《计算机科学》2021,48(z1):240-245
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量.  相似文献   

8.
何明  孙望  肖润  刘伟世 《计算机科学》2017,44(Z11):391-396
协同过滤推荐算法可以根据已知用户的偏好预测其可能感兴趣的项目,是现今最为成功、应用最广泛的推荐技术。然而,传统的协同过滤推荐算法受限于数据稀疏性问题,推荐结果较差。目前的协同过滤推荐算法大多只针对用户-项目评分矩阵进行数据分析,忽视了项目属性特征及用户对项目属性特征的偏好。针对上述问题,提出了一种融合聚类和用户兴趣偏好的协同过滤推荐算法。首先根据用户评分矩阵与项目类型信息,构建用户针对项目类型的用户兴趣偏好矩阵;然后利用K-Means算法对项目集进行聚类,并基于用户兴趣偏好矩阵查找待估值项所对应的近邻用户;在此基础上,通过结合项目相似度的加权Slope One算法在每一个项目类簇中对稀疏矩阵进行填充,以缓解数据稀疏性问题;进而基于用户兴趣偏好矩阵对用户进行聚类;最后,面向填充后的评分矩阵,在每一个用户类簇中使用基于用户的协同过滤算法对项目评分进行预测。实验结果表明,所提算法能够有效缓解原始评分矩阵的稀疏性问题,提升算法的推荐质量。  相似文献   

9.
传统的协同过滤推荐算法为目标用户推荐时,考虑了所有用户的历史反馈信息对物品相似度的影响,同时相似度的度量仅依靠用户评分信息矩阵,导致了推荐效果不佳。为解决上述问题,提出了基于用户谱聚类的Top-N协同过滤推荐算法(SC-CF),即应用谱聚类将兴趣相似的用户分成一类,具有相似兴趣爱好的用户比其他用户具有更高的推荐参考价值,然后在类中为目标用户推荐。SC-CF+算法在SC-CF算法的基础上,在相似度度量方法中分别引入了物品时间差因素、用户共同评分权重、流行物品权重。实验结果表明,提出的两种算法提高了推荐结果的召回率。  相似文献   

10.
协同过滤技术是推荐系统中应用最为广泛的技术之一,用户的相似性度量是整个算法的核心要素,会对推荐算法准确率产生很大的影响.传统的协同过滤算法过度依赖用户评分机制,影片自身的标签信息没有被考虑为一个影响因素,在用户聚类时采用K近邻算法,会由于评分矩阵过于稀疏而难以收敛.同时,传统推荐技术仅基于用户历史行为进行推荐,无法为新用户提供合理的推荐.针对以上问题,提出了一种基于用户行为建模的蚁群聚类和协同过滤算法相结合的影片推荐技术.  相似文献   

11.
为了降低数据稀疏性对推荐算法效率产生的影响,提出一种基于子空间聚类的协同过滤推荐算法(SCUCF).该算法创建感兴趣、不感兴趣以及既不感兴趣也不不感兴趣三种类型被评价项目的不同子空间.利用项目子空间为目标用户绘制邻居用户树,以此来寻找目标用户的邻居.利用改进的用户相似性计算方法来确定推荐用户.通过MovieLens 1...  相似文献   

12.
使用协同过滤进行推荐,在处理大数据集时存在效率问题和推荐结果质量不高的问题。k均值聚类在处理大数据集时有着较好的性能。针对使用协同过滤进行推荐存在的问题,通过使用遗传算法将聚类和协同过滤组合起来进行项目推荐,以此来提高推荐算法的推荐效率和推荐质量,降低组合聚类和协同过滤进行推荐的复杂度。使用组合得到的算法在MovieLens数据集上做推荐对比实验,结果表明,相比单纯使用协同过滤进行推荐,使用基于遗传算法的聚类与协同过滤组合推荐算法进行项目推荐,能得到质量更好的推荐结果。  相似文献   

13.
协同过滤推荐算法是目前应用最为成功的一种电子商务推荐方法,但协同过滤算法也存在数据稀疏性和缺乏个性化等问题,这些问题影响了推荐算法的效率和准确性.针对以上问题,提出了引入Web日志分析的方法,同时利用用户聚类等相关技术,不仅解决了数据稀疏的问题也提高了推荐的准确性.  相似文献   

14.
针对用户从海量图书中选择喜欢图书较难的问题,提出一种基于图书属性分组的改进协同过滤算法。该算法首先根据用户喜欢的图书类型去选择相似用户,缩小数据集,再根据基于用户的协同过滤算法寻找最近邻居集合,然后根据项目推荐值的方法向用户推荐感兴趣的图书序列。实验结果表明:在同一数据量下,该算法在推荐数据量以及覆盖率方面均优于同类算法。  相似文献   

15.
协同过滤推荐算法是目前应用最为广泛的个性化推荐方法之一,但传统的推荐算法在计算目标用户邻居集时只考虑用户项目评分矩阵中的具体数值,没有考虑用户偏好以及用户评分与项目属性之间的关系,推荐精度也有待进一步提高。针对这一问题,提出了一种基于用户偏好和项目属性的协同过滤推荐算法(UPPPCF)。本算法在传统的用户项目评分矩阵基础上综合考虑用户偏好以及项目属性,把评分矩阵转变成基于用户偏好的用户项目属性评分矩阵,然后根据这一评分矩阵来计算目标用户的最近邻居集,克服了传统相似性计算方法只依靠用户评分值的不足,同时本文对预测值判定给出了一种有效的度量方法。在 MovieLen 数据集上的实验结果表明,本文提出的UPPPCF算法能够有效弥补传统协同过滤算法中的不足,而且在推荐精度上有了明显的提高。  相似文献   

16.
针对传统协同过滤推荐算法没有充分考虑用户属性及项目类别划分等因素对相似度计算产生的影响,存在数据稀疏性,从而导致推荐准确度不高的问题.提出一种基于用户属性聚类与项目划分的协同过滤推荐算法,算法对推荐准确度有重要影响的相似度计算进行了充分考虑.先对用户采用聚类算法以用户身份属性聚类,进而再对项目进行类别划分,在相似度计算中增加类别相似度,考虑共同评分用户数通过加权系数进行综合相似度计算,最后结合平均相似度,采用阈值法综合得出最近邻.实验结果表明,所提算法能够有效提高推荐精度,为用户提供更准确的推荐项目.  相似文献   

17.
协同过滤是众多推荐技术中最主流的推荐技术,在个性化推荐系统中起着主导作用,然而随着大数据时代的到来,信息过载问题日益严重,评分矩阵越来越稀疏,传统协同过滤算法遇到了瓶颈。为了提高稀疏矩阵下推荐系统的推荐质量,本文对传统协同过滤算法进行改进。首先对项目集进行聚类,然后利用Slope One算法对聚类后的矩阵进行填充,最后在计算相似度时引入用户对每个聚类的喜好程度作为权重。实验结果表明,改进后的算法提高了推荐系统的推荐质量,能够有效缓解评分矩阵稀疏问题。  相似文献   

18.
协同过滤技术是目前电子商务推荐系统中最为主要的技术之一,但随着系统规模的日益扩大,它面临着算法可扩展性和数据稀疏性两大挑战。针对上述问题,本文提出了一种基于聚类和协同过滤的组合推荐算法。首先利用聚类对项目进行分类,在用户感兴趣的类里进行推荐计算,有效地解决了算法的可扩展性问题;接着在每一类中使用基于项目的协同过滤对未评价的项目进行预测,把较好的预测值填充到原用户-项集合中,有效地缓解了数据稀疏性问题;最后根据协同过滤推荐在相似项目的范围内计算邻居用户,给出最终的预测评分并产生推荐。实验结果表明,本算法有效地解决了上述两个问题,提高了推荐系统的推荐质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号