首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高Android恶意应用检测效率,将二值粒子群算法(BPSO,Binary Particle Swarm Optimization)用于原始特征全集的优化选择,并结合朴素贝叶斯(NB,Nave Bayesian)分类算法,提出一种基于BPSO-NB的Android恶意应用检测方法。该方法首先对未知应用进行静态分析,提取AndroidManifest.xml文件中的权限信息作为特征。然后,采用BPSO算法优化选择分类特征,并使用NB算法的分类精度作为评价函数。最后采用NB分类算法构建Android恶意应用分类器。实验结果表明,通过二值粒子群优化选择分类特征可以有效提高分类精度,缩短检测时间。  相似文献   

2.
针对静态检测和动态检测方式存在的问题,提出了一种基于混合方式的恶意移动应用检测方法。该方法采用静态分析和动态分析相结合的方式,通过静态分析获取权限特征和函数调用特征,通过动态分析在沙盒环境下借助于事件仿真获取系统调用序列并提取函数调用依赖关系特征;在此基础上,提出了一种基于集成学习的分类器构造方法,区分恶意应用和正常应用。在来自于第三方应用市场中的3000个样本集上进行了实验验证,结果表明基于混合方式的恶意应用检测效果要优于基于静态分析的方式和基于动态分析的方式;考虑多种类型特征的样本上的检测精度要高于采用单一特征刻画的样本上的值;采用集成分类器具有较好的检测精度。  相似文献   

3.
目前针对未知的Android恶意应用可以采用机器学习算法进行检测,但传统的机器学习算法具有少于三层的计算单元,无法充分挖掘Android应用程序特征深层次的表达。文中首次提出了一种基于深度学习的算法DDBN (Data-flow Deep BeliefNetwork)对Android应用程序数据流特征进行分析,从而检测Android未知恶意应用。首先,使用分析工具FlowDroid和SUSI提取能够反映Android应用恶意行为的静态数据流特征;然后,针对该特征设计了数据流深度学习算法DDBN,该算法通过构建深层的模型结构,并进行逐层特征变换,将数据流在原空间的特征表示变换到新的特征空间,从而使分类更加准确;最后,基于DDBN实现了Android恶意应用检测工具Flowdect,并对现实中的大量安全应用和恶意应用进行检测。实验结果表明,Flowdect能够充分学习Android应用程序的数据流特征,用于检测未知的Android恶意应用。通过与其他基于传统机器学习算法的检测方案对比,DDBN算法具有更优的检测效果。  相似文献   

4.
二进制粒子群算法(BPSO)由于规则简单、参数设置较少等优点被广泛应用到各领域,但是其具有过强的全局搜索能力,缺乏局部的搜索能力等缺陷.针对BPSO存在的缺陷很多文献提出了改进方法,但是针对转换函数的改进较少.通过定义粒子间的距离来分析出BPSO所存在的缺陷,从而进一步分析BPSO中S型转换函数的缺点,并且有针对性地提...  相似文献   

5.
应用程序的行为语义在Android恶意应用检测中起着关键作用。为了区分应用的行为语义,文中提出适合用于Android恶意应用检测的特征和方法。首先定义广义敏感API,强调要考虑广义敏感API的触发点是否与UI事件相关,并且要结合应用实际使用的权限。该方法将广义敏感API及其触发点抽象为语义特征,将应用实际使用的权限作为语法特征,再利用机器学习分类方法自动检测应用是否具有恶意性。在13226个样本上进行了对比实验,实验结果表明,该方法的分析速度快且开销小,选取的特征集使Android恶意应用检测得到很好的结果;经机器学习分类技术的比较,我们选择随机森林作为检测方案中的分类技术,所提特征策略的分类准确率达到96.5%,AUC达到0.99,恶意应用的分类精度达到98.8%。  相似文献   

6.
随着Android应用程序数量的快速增长,面向Android应用程序的安全性检测已成为网络安全领域的热点研究问题之一。针对恶意应用静态检测的特征选择,给出了良性特征、恶意特征、良性典型特征、恶意典型特征、非典型特征等概念,设计提出了特征频数差异增强算法FDE。FDE算法通过计算特征出现在良性与恶意应用中的频数,去除静态特征中的非典型特征。为合理验证算法的目标效果和性能优劣,分别设计了基于平衡数据与非平衡数据的实验,对于非平衡数据,引入了权重损失函数。实验结果表明,FDE算法可有效去除静态特征中的非典型特征,筛选出有效特征,权重损失函数可有效提高非平衡数据中的恶意数据识别率。  相似文献   

7.
特征选择是数据挖掘中数据预处理的一个重要步骤,因此选择出最优的特征子集可有效地降低学习算法的数据维度和计算成本。采用二进制粒子群优化算法(binary particle swarm optimization algorithm,BPSO)来对特征选择过程进行优化。提出基于特征聚类信息进行种群初始化的策略,其中特征的聚类由社团划分算法完成,并根据划分后的信息,在初始化过程中减少信息冗余,提高初始化种群的质量。提出一种基于决策空间相似性的自适应局部搜索策略,其中粒子的相似性指数由粒子在决策空间中的相似性确定。进化过程中,自适应地调整粒子进行局部搜索,避免算法早熟。最后,选择三种代表性的优化算法分别在11个UCI数据集上进行对比实验。实验结果表明,改进后的BPSO算法得到的特征选择结果在降低特征数目方面明显优于其他对比算法,且分类精度也有显著提高。  相似文献   

8.
本文构建的静态检测系统主要用于检测Android平台未知恶意应用程序.首先,对待检测应用程序进行预处理,从Android Manifest.xml文件中提取权限申请信息作为一类特征属性;如待检测应用程序存在动态共享库,则提取从第三方调用的函数名作为另一类特征属性.对选取的两类特征属性分别选择最优分类算法,最后根据上述的两个最优分类算法对待检测应用程序的分类结果判定待检测应用程序是否为恶意应用程序.实验结果表明:该静态检测系统能够有效地检测出Android未知恶意应用程序,准确率达到95.4%,具有良好的应用前景.  相似文献   

9.
网络故障诊断中大量无关或冗余的特征会降低诊断的精度,需要对初始特征进行选择。Wrapper模式特征选择方法分类算法计算量大,为了降低计算量,本文提出了基于支持向量的二进制粒子群(SVB-BPSO)的故障特征选择方法。该算法以SVM为分类器,首先通过对所有样本的SVM训练选出SV集,在封装的分类训练中仅使用SV集,然后采用异类支持向量之间的平均距离作为SVM的参数进行训练,最后根据分类结果,利用BPSO在特征空间中进行全局搜索选出最优特征集。在DARPA数据集上的实验表明本文提出的方法能够降低封装模式特征选择的计算量且获得了较高的分类精度以及较明显的降维效果。  相似文献   

10.
近年来Android平台遭到了黑客们的频繁攻击。随着安卓恶意应用的增多,信息泄露以及财产损失等问题也愈发严重。首先测试了恶意应用与正常应用在图片和界面元素两类资源特征上的差异,提出了一种结合资源特征的Android恶意应用检测方法——MalAssassin。该方法对APK进行静态分析,提取应用的8类共68个特征,包括综合了其他研究所提取的权限、组件、API、命令、硬编码IP地址、签名证书特征,并且结合了所发现的图片与界面元素两类资源特征。这些特征被映射到向量空间,训练成检测模型,并对应用的恶意性进行判定。通过对53 422个正常应用以及5 671个恶意应用的测试,MalAssassin达到了99.1%的精确度以及召回率。同时,资源特征的引入使得MalAssassin在不同数据集上具有较好的适应性。  相似文献   

11.
基于改进离散二进制粒子群的SVM选择集成算法   总被引:1,自引:0,他引:1  
针对基于离散二进制粒子群(BPSO)的SVM选择集成算法的分类精度不高,以及所选分类器个数过多等问题,利用改进的离散二进制粒子群算法(IBPSO)和SVM选择集成算法相结合,提出基于IBPSO的SVM选择集成算法。通过选用合适的适应度函数以及调节因子[k],进行多次仿真,实验表明,对由boostrap方式生成的SVM集合,基于IBPSO的SVM选择集成在精度和分类器个数方面均优于基于BPSO的SVM选择集成,证明了IBPSO算法的优越性。  相似文献   

12.
为了高效求解具有单连续变量的背包问题(KPC),首先基于高斯误差函数提出了一个新颖S型转换函数,给出了利用该转换函数将一个实向量转换为0-1向量的新方法,由此提出了一个新的二进制粒子群优化(NBPSO)算法;然后,利用KPC的第二数学模型,并且把NBPSO与处理KPC不可行解的有效算法相结合,提出了求解KPC的一个新方...  相似文献   

13.
针对传统二进制粒子群优化(BPSO)算法未充分利用粒子位置的历史信息辅助迭代寻优,从而影响算法寻优效率的进一步提高的问题,提出一种改进的带经验因子的BPSO算法。该算法通过引入反映粒子位置历史信息的经验因子来影响粒子速度的更新,从而引导粒子寻优。为避免粒子对历史信息的过度依赖,算法通过赏罚机制和历史遗忘系数对其进行调节,最后通过经验权重决定经验因子对速度更新的影响。仿真实验结果表明,与经典BPSO算法以及相关改进算法相比,新算法无论在收敛速度还是全局搜索能力上,都能达到更好的效果。  相似文献   

14.
入侵检测中的快速特征选择方法   总被引:5,自引:3,他引:2  
进行入侵检测前必须分析输入数据的特征。使用粒子群优化算法对特征进行选择,消除冗余属性、降低问题规模、提高数据分类质量、加快数据处理速度。用二进制字符串序列表示粒子位置,阐述位置和速度的更新策略以及适应度函数的选择。在KDD CUP1999数据集上进行实验,结果表明与遗传进化算法相比,该方法可以更有效地精简特征,提高分类质量。  相似文献   

15.
吴涛  严余松  陈曦 《计算机应用》2013,33(10):2815-2818
为了改善量子行为粒子群优化(QPSO) 算法的收敛性能, 提出了一种基于随机评价策略的改进QPSO优化算法(RE-QPSO)。该算法通过使用随机因子对种群中粒子的创新性进行评价,提高了粒子摆脱局部极值的能力。提出了固定取值和线性递减两种控制策略分析RE-QPSO算法的唯一控制参数——收缩-扩张系数,通过6个标准测试函数的仿真结果给出了具有实际指导意义的控制参数选择方法  相似文献   

16.
保持粒子活性的改进粒子群优化算法   总被引:9,自引:3,他引:6  
针对基本粒子群优化算法(particle swarm optimization, 简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。  相似文献   

17.
黄海芳  孙建华 《计算机工程》2011,37(24):260-262
为使现有Web服务组合的服务选择技术满足用户需求,提出一种基于改进二进制粒子群优化(BPSO)的服务选择算法。引入变异算子和线性递减惯性权重,解决传统二进制BPSO的早熟收敛问题,采用粒子记忆性对不满足约束条件的个体进行修正。实验结果表明,该算法能提高寻优效率。  相似文献   

18.
基于狮群中狮王、母狮及幼狮的自然分工,模拟狮王守护、母狮捕猎、幼狮跟随3种群智能行为,提出群体智能算法——狮群算法.算法中不同种类的狮子位置更新方式不同.遵循自然界生物“适者生存”的竞争法则,狮王守护领土,优先享用食物,母狮合作捕猎,幼狮分为学习捕猎、饥饿进食和成年被驱逐.狮子位置更新方式的多样化保证算法快速收敛,不易陷入局部最优.最后,将算法应用于6个标准测试函数优化问题,并对比粒子群算法、骨干粒子群算法,测试结果表明,文中算法收敛速度较快,精度较高,能较好地获得全局最优解.  相似文献   

19.
基于粒群优化的K均值算法及其应用   总被引:3,自引:0,他引:3  
宋凌  李枚毅  李孝源 《计算机工程》2008,34(16):201-203
针对K均值聚类算法依赖于初始值的选择,且容易收敛于局部极值的缺点,提出一种基于粒群优化的K均值算法。利用粒群优化指导K均值算法的初始值选择,使其容易收敛到全局极值。将该算法应用到入侵检测中,实验结果表明该算法聚类效果好、收敛快、容易实现。  相似文献   

20.
张翠军  陈贝贝  周冲  尹心歌 《计算机应用》2018,38(11):3156-3160
针对在分类问题中,数据之间存在大量的冗余特征,不仅影响分类的准确性,而且会降低分类算法执行速度的问题,提出了一种基于多目标骨架粒子群优化(BPSO)的特征选择算法,以获取在特征子集个数与分类精确度之间折中的最优策略。为了提高多目标骨架粒子群优化算法的效率,首先使用了一个外部存档,用来引导粒子的更新方向;然后通过变异算子,改善粒子的搜索空间;最后,将多目标骨架粒子群算法应用到特征选择问题中,并利用K近邻(KNN)分类器的分类性能和特征子集的个数作为特征子集的评价标准,对UCI数据集以及基因表达数据集的12个数据集进行实验。实验结果表明,所提算法选择的特征子集具有较好的分类性能,最小分类错误率最大可以降低7.4%,并且分类算法的执行时间最多能缩短12 s,能够有效提高算法的分类性能与执行速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号