首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
结合电化学沉积法和浸渍法制备了不同层数"三明治"结构的MoO_2/GO复合薄膜电极材料,将其直接作为电极装配成锂电池进行电化学性能研究。结果表明:二氧化钼纳米颗粒分布均匀,缩短沉积时间(1 min)和沉积层数(2层)时,复合薄膜的厚度仅为2.4μm,此时薄膜具有最佳的电化学性能,在0.1 C电流密度下进行充放电测试,首次放电比容量可达1 250 mAh/g,循环50次后放电比容量仍有781 mAh/g,表现出良好的电化学稳定性。  相似文献   

2.
锂离子电池正极材料LiNi0.8Co0.2O2的合成及性能研究   总被引:1,自引:0,他引:1  
以硝酸盐和淀粉为原料,采用溶胶-凝胶方法合成LiNi0.8Co0.2O2锂离子电池正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相的α-NaFeO2型层状结构,颗粒小且分布均匀,在电压为2.75~4.50 V (vs. Li+/Li) 范围内,以0.2 mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为183.1 mAh/g,经过50周充放电循环后放电比容量为171.3 mAh/g,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

3.
非对称超级电容器具有快速充放电、高功率密度和长期循环稳定等特点,电极材料的性质对其性能起到决定性作用,利用阳离子取代是调节电极材料结构、性质和优化储能性能的有效方法。通过控制尖晶石型硫化物中的阳离子组成,采用水热法在泡沫镍基底表面制备了MCo2S4(M代表Co、Ni或Cu)纳米片阵列。由于金属离子半径和电负性差异,向Co3S4中引入Ni2+或Cu2+形成NiCo2S4或CuCo2S4,会诱导其晶格结构发生应变,从而提升金属位点的反应活性。相比于Co3S4,NiCo2S4的电荷转移电阻和离子扩散电阻分别下降了48.6%和28.7%,获得了良好的电化学性能。当电流密度为1 A/g时,NiCo2S4的比容量为1 128.8 F/g;当电流密度为10 A/g时,比容量保持率为59.8%;经过8 000次循环后仍保持60.2%的初始比容量。  相似文献   

4.
为了研发比容量高和循环性能稳定的电化学储锂电极材料,用二甲基咪唑钴(ZIF-67)作为Co源前驱体,通过一步水热法制备Z-CoS2-MoS2/rGO(还原氧化石墨烯)复合材料,研究微观结构和电化学储锂性能. 结果表明,与采用CoCl2作为钴源制得的CoS2-MoS2/rGO相比,Z-CoS2-MoS2/rGO复合材料中CoS2粒子有着更加细小和较均匀的粒径,很好地分散在MoS2和rGO表面,形成了相应的异质结构. 作为电化学储锂电极材料,Z-CoS2-MoS2/rGO的可逆比容量可以达到1 092 mA·h/g,经900次循环后在500 mA/g电流密度下保持了941 mA·h/g的储锂可逆比容量,显示了稳定的充放电循环性能. Z-CoS2-MoS2/rGO优异的电化学储锂性能主要归因于该双金属硫化物复合材料具有较多的电化学储锂电极反应电对以及复合材料中CoS2纳米颗粒、MoS2纳米片和rGO之间均匀的复合及所形成的异质结构.  相似文献   

5.
为改善二氧化锡(SnO2)的气敏性能,以聚苯乙烯(PS)微球为模板,SnO2纳米晶为骨架,采用颗粒模板法成功制备大孔SnO2(MP-SnO2)气敏材料,并对制备的样品进行差热分析(TGDTA)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附脱附分析。结果表明,制备的MP-SnO2样品具有贯通孔道大孔结构,平均大孔孔径为300 nm,与SnO2纳米晶相比具有更大的比表面积。通过气敏测试发现MP-SnO2在280℃工作温度下对体积分数4×10-4的乙醇气体的灵敏度高达138,是SnO2纳米颗粒的1.6倍,显示出更加优异的气敏性能。  相似文献   

6.
采用气泡式喷墨打印技术制备LiCo0.7Ni0.3O2超薄电极,确定制备稳定LiCo0.7Ni0.3O2分散体系的最佳工艺条件为:体系pH值为8,粘合剂CMCS含量为1%,分散剂AES-A含量为0.5%,超声波分散时间为10min。以LiCo0.7Ni0.3O2超薄电极为正极、金属锂片为负极,组装成扣式电池,其电化学性能测试结果显示:打印5层和10层的LiCo0.7Ni0.3O2超薄电极在电位区间3.2~4.2V、电流密度3μA/cm2下,首次放电比容量分别为147mAh/g和144mAh/g;打印5层的LiCo0.7Ni0.3O2超薄电极充放电循环100次后放电比容量保持在98%以上;LiCo0.7Ni0....  相似文献   

7.
以Na3V2(PO4)3(NVP)为基础材料,以海藻酸钠为碳源,采用化学合成方法,对NVP材料进行碳复合、非金属离子掺杂,合成了具有优异电化学性能的NVP/C复合正极材料。探究了材料组成、合成温度、微观结构等对NVP复合材料电化学性能的影响。研究结果表明,海藻酸钠形成的碳骨架结构拥有良好的机械强度,将其在高电流密度下进行充放电时,碳骨架能够保持稳定不坍塌,提高材料的循环性能和倍率性能;当加入50 mL的海藻酸钠水溶液并经800℃烧时,NVP/C复合材料的电化学性能最佳,在0.5 C的低倍率下其首次放电比容量为110.3 mAh·g-1,当倍率增加到50 C时,其放电比容量为78.1 mAh·g-1,当循环2 000圈之后其放电比容量保持率高达80.4%,其库伦效率基本保持在100%,远优于已报道的研究结果。  相似文献   

8.
采用水浴法在泡沫镍基底上生长MnO_2/Ni(OH)_2复合纳米片阵列材料,并通过恒流充放电和循环伏安法研究所得MnO_2/Ni(OH)_2的电化学性能。利用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)分析产物的物相组成和微观形貌。结果表明:泡沫镍基底表面垂直生长着多孔纳米片阵列,纳米片间围成150~300nm的小孔;在电流密度为200mA/g时,所得纳米片阵列材料的首次放电比容量可达1575.4mAh/g,库伦效率为95.6%,100次循环材料的平均放电比容量达到1052.2mAh/g;这表明该复合材料具有较高的比容量和良好的循环性能。  相似文献   

9.
为了提高双金属氧化物电极材料的电化学性能和循环稳定性,通过简单省时的溶剂热煅烧法制得多孔铁钴双金属氧化物(FexCoyO4)纳米球,并探究加入不同比例的铁钴对电化学性能的影响;通过XRD、SEM和XPS对所得的电极材料进行表征,利用电化学工作站和蓝电电池测试系统等进行电化学性能测试。结果表明:多孔的双金属氧化物纳米球可以有效地提高超级电容器的电化学性能,同时还具有超长的循环寿命;当加入的铁钴比例为1∶1时,所制备的FeCoO4多孔纳米球电极表现出最大比电容596 F/g;将电极材料组装为对称超级电容器,测试其循环稳定性,在3 A/g的电流密度下循环20 000圈后,其容量保持率可增加至120%。  相似文献   

10.
采用燃烧法,在不通入惰性气体保护的环境下,合成了Mg2+ 、Zr4+掺杂的磷酸铁锂(LiFePO4)正极材料. 通过X射线衍射、傅立叶变换红外光谱、扫描电子显微镜、恒电流充放电循环技术,对材料的结构和电化学性能(放电性能、循环性能)进行表征. 结果表明,Mg2+ 、Zr4+的掺入没有改变材料的橄榄石型结构,但显著改善了材料的电化学性能,其中Zr4+掺杂的LiFePO4具有更高的放电比容量,在0.2 C放电倍率下最高达到143.4 mAh/g,且循环性能良好(经50次循环后放电比容量为126.3 mAh/g).  相似文献   

11.
为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.  相似文献   

12.
用四氯化锡(SnCl4)和L-半胱氨酸(L-Cys)的水热反应合成纳米片状的SnS2,用X-射线衍射(XRD)和透射电镜(TEM)对其微观结构和形貌进行表征.讨论了SnCl4与L-Cys物质的量比对产物及其形貌的影响.结果显示,当SnCl4与L-Cys的物质的量比为1∶2,得到的产物是SnS2和SnO2纳米粒子的混合物;当SnCl4与L-Cys的物质的量比为1∶4~1∶6,得到的产物是纳米片状的SnS2.电化学测试结果显示,纳米片状SnS2作为锂离子电池负极材料具有较高的可逆容量和良好的循环稳定性,其初始容量为480 mAh/g,80次循环后其容量为407 mAh/g.  相似文献   

13.
用SnCl4和葡萄糖的水热反应合成SnO2/碳质复合材料,然后在氮气气氛中热处理使SnO2被碳热还原为Sn纳米粒子,制备得到Sn/C纳米复合材料.用X-射线衍射(XRD), 透射电镜(TEM)和X-射线电子散射能谱(EDX)对样品进行表征.结果显示Sn纳米粒子具有球形的形貌,并均匀地分散在无定形的碳材料中.对于Sn质量分数58.5%和32.3%的Sn/C复合材料,Sn纳米粒子的平均粒径分别为51和20 nm.电化学测试结果显示,Sn/C复合材料具有高的电化学贮锂可逆容量和良好的循环稳定性.讨论了Sn/C纳米复合材料的形成机理及其循环稳定性能改善的原因.  相似文献   

14.
通过两步水热法合成了可用作锂离子电池负极材料的二氧化锡-石墨烯-炭(SnO2-Gn-C)三元复合物.采用X射线粉末衍射(XRD)、透射电镜(TEM)和电化学测试研究了SnO2-Gn-C复合物的晶型结构、形貌和电化学性能,并考察了反应温度和Sn/Gn物质的量比对复合物电化学性能的影响.实验结果显示,SnO2-Gn-C复合物在200mA· g-1电流密度下初始放电比容量达到1 225mA·h·g-1,50次充放电循环后比容量仍有约229mA.h·g-1.SnO2-Gn-C良好的电化学性能主要归结于大比表面积的石墨烯对SnO2纳米粒子的良好分散作用、石墨烯和炭的高导电性以及炭包覆后的复合物充放电时体积效应的显著减小.  相似文献   

15.
为了研发高效低成本的析氢反应(HER)电催化剂和高性能的电化学储锂电极材料,通过一步水热法制备MoS2/硼掺杂石墨烯(MoS2/BG)复合材料. 结果表明,少堆积MoS2纳米片均匀地分散在硼掺杂石墨烯上,并具有较多的无序结构和扩大的层间距. 作为析氢反应电催化剂,MoS2/BG复合材料表现出较高的电催化活性和较低的Tafel斜率(46.3 mV/dec);作为电化学储锂电极材料,MoS2/BG复合材料表现出优异的电化学储锂性能,可逆比容量为1 205 mA·h/g,并具有稳定的循环性能和显著增强的高倍率特性. MoS2/BG复合材料电化学性能优异是由于硼掺杂改变石墨烯的电子性质和表面特性,以及无序结构较多的弱堆积MoS2层均匀地分散在硼掺杂石墨烯表面,增加电催化析氢反应的活性位点和电化学储锂能力,降低电极反应的电子转移阻抗,增强电极反应的动力学性能.  相似文献   

16.
为了改善锂硫电池的比容量和循环稳定性等电化学性能,以聚丙烯腈纤维为基体,采用无钯活化化学镀法在其表面镀一层镍,制备得到复合纤维.通过热处理去除复合纤维中的聚丙烯腈,得到氧化镍中空纤维,然后在氢等离子体气氛中对氧化镍中空纤维进行还原制备中空镍纤维管,并以它作为锂硫电池正极材料活性物质的承载体,制备含镍纤维管的硫电极来改善锂硫电池的电化学性能.采用扫描电子显微镜和X射线能谱仪表征镍纤维管的表面形貌和成分,结果表明:所制备的纤维管主要是镍,但含有少量的磷,可能是镀液中次磷酸盐中的磷元素被还原,且管径为10~15μm,管壁厚度均匀,约0.7μm.采用恒流充放电和交流阻抗谱对含镍纤维管硫电极的电化学性能进行表征,结果表明:添加镍的纤维管能够增强锂硫电池的电化学性能,在充放电电流密度为每平方厘米0.2mA的条件下,镍纤维管增强硫电极的首次放电比容量为941.6mAh/g,20次循环后的放电比容量仍保持在593.3mAh/g,表现出较高的放电比容量和良好的循环稳定性.  相似文献   

17.
以聚苯胺水凝胶衍生碳为载体,通过在载体材料上原位生长二氧化锰,制备了聚苯胺水凝胶衍生碳/二氧化锰复合材料。通过X射线衍射、拉曼光谱、扫描电子显微镜及X射线光电子能谱仪对产物的化学结构、微观形貌和锰元素的价态进行了表征,并利用电化学技术对产物的超级电容性能进行了研究。研究结果表明,其具有较高的比电容(170 F·g-1)、良好的电化学响应及倍率特性、较低的阻抗,以及较好的循环稳定性(循环1 000次,比电容保持率为94.7%)。本文开发的聚苯胺水凝胶衍生碳/二氧化锰复合材料具有制备方法简单和纳米结构理想等优点,在高性能超级电容器电极材料领域具有良好应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号