首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
利用车载被动DOAS测量系统,对某钢铁企业进行分装置绕行观测。采用了计算参与拟合截面相关性的方法,确定痕量气体最优反演波段,获取观测路径上的垂直柱浓度后,结合测量时间内的车速以及风速风向信息,计算得出区域内SO2及NO2排放净通量。实验得出某钢铁企业厂区内轧钢冶炼区域SO2与NO2排放净通量均值分别为149kg/h和372kg/h;焦化区域SO2与NO2排放净通量均值分别为260kg/h和286kg/h;电厂区域SO2与NO2排放净通量均值为21kg/h和26kg/h;石灰烧培区域SO2与NO2排放净通量均值为64kg/h和79kg/h;烧结区域SO2与NO2排放净通量均值为34kg/h和99kg/h。  相似文献   

2.
介绍了自行研制的车载差分吸收激光雷达(DIAL)的系统结构和测量原理.利用可调谐激光器输出波长为286.3 nm和286.9 nm的激光测量SO2,测量范围为500m~3 km.该雷达在北京和合肥对SO2进行了实地测量,给出实测的部分典型结果,测量结果与地面仪器定点测量的结果一致.分析了误差的几种影响因素,总的测量误差在距离分别率为300m时小于7×10-9.  相似文献   

3.
北京市大气SO2、NO2和O3的激光雷达监测实验   总被引:4,自引:1,他引:3  
目前监测网中大部分SO2、NO2和O3监测设备为地基点式仪器.该种设备不能获得大气SO2、NO2和O3的空间分布信息.SO2、NO2和O3的空间分布数据在习惯上一般是通过球载探测仪来获取.但通过球载仪获得的数据时间和空间分辨率都较差.中科院安徽光机所已开发研制完成了车载测污激光雷达系统.该系统能进行大气SO2、NO2和O3进行三维空间扫描测量.利用该系统2001年12月27日至2002年1月27日期间于北京市进行了大气SO2、NO2和O3的监测实验,首次给出了北京市近地面层大气SO2、NO2和O3的激光雷达测量数据.测量数据与地面仪器的监测数据进行了比较,结果表明车载测污激光雷达系统的测量数据是合理可靠的.  相似文献   

4.
利用车载DOAS技术探测污染气体区域分布和输送   总被引:1,自引:0,他引:1  
采用安装在汽车上的被动DOAS系统对所测城区和污染源进行连续测量。通过DOAS拟合方法处理采集的太阳天顶散射光谱,获得测量点上的污染气体柱密度。通过对重庆城区及重庆某电厂区域的观测实验,获得了重庆市区及所测电厂的SO2、NO2的分布信息和输送情况。在西南、东南风场影响下,所测电厂区域向重庆主城区的SO2平均输送通量分别为:0.37 kg/s、0.36 kg/s,NO2平均输送通量分别为:0.29 kg/s、0.27 kg/s。实验结果表明车载DOAS的光学遥测方法为区域污染气体分布和输送快速测量提供一种有效的手段。  相似文献   

5.
与搭载在EOS AURA卫星上的OMI(Ozone Monitoring Instrument)探测器相比,由车载被动差分吸收光谱(differential optical absorption spectroscopy,DOAS)技术获得的NO2柱浓度数据空间分辨率更高,因而能够更准确的反映出NO2时空分布情况,利用OMI NO2 Level2数据产品重构2013年6月石家庄及周边区域的NO2柱浓度分布,结合风场数据分析NO2柱浓度沿风场方向的空间分布,同时,使用车载被动DOAS系统对西南通道即石家庄-保定-北京路段进行走航观测,获取车载DOAS NO2柱浓度分布数据,使用指数修正高斯(exponentially-modified Gaussian,EMG)拟合方式,分别拟合OMI NO2 数据和经过地基DOAS数据修正后的OMI NO2 数据得到NOx排放通量分别为195.8 mol/s、160.6 mol/s。经过地基DOAS数据修正的NOx排放量小于卫星估算值,可能是由于卫星的空间分辨率较低导致的。  相似文献   

6.
介绍了北京奥运前利用一套微型被动差分吸收光谱学(mini-DOAS)系统,测量和估算北京市石景山区1个点源和1个面源SO2排放量的实验,探讨了应用该系统测量和估算排放量过程中的重要影响因素,尤其是天气和气象条件的作用.研究发现: (1)测量应当在中尺度天气系统的稳定控制下进行,而天气系统调整阶段由于局地山谷风的干扰,不易获得可靠的测量结果;(2)在混合层高度低、近地面几百米风速小的情况下,可以获得更为准确的测量值;(3)在推算点源排放量时,应选择排放高度上的风速和风向.  相似文献   

7.
二氧化硫 (SO2) 和三氧化硫 (SO3) 是工业废气排放中的重要物质, 对环境和人体健康危害很大, 但对于他们 在排放过程中的原位-在线测量一直是个挑战。采用可调谐二极管激光吸收光谱 (TDLAS) 技术, 基于 7.16 µm 量子级 联激光器 (QCL) 对 SO2 和 SO3 进行同时检测, 通过波长调制光谱技术提高测量系统的灵敏度和鲁棒性。在高温低压 条件下采用单光程-小体积的气体吸收池利用 TDLAS 同时测量 SO2 和 SO3 的吸收谱线, 测量的 SO2 和 SO3 的吸收 光谱充分分离, 从而确保了测量的准确性。同时, 修正了温度变化对 SO2 气体浓度测量的影响, 并提出了用已知浓度 的 SO2 来定标未知浓度的 SO3 气体。 Allan 方差分析表明, 在 34 s 的积分时间内, SO2 的最小检测限达到了1.98×10−6 cm3·cm−3, SO3 可探测的最低浓度为 1.575 ×10−6 cm3·cm−3。系统的上升响应时间约为 16 s, 下降响应时间约为 18 s。  相似文献   

8.
春小麦土壤碳排放主要影响因子研究   总被引:1,自引:0,他引:1  
本研究对春小麦土壤CO2排放通量与地温、土壤含水量作了相关性分析。结果表明:高茬收割免耕较传统低茬收割翻耕处理减弱了土壤CO2排放通量对地温反馈的敏感性,而高等量秸秆翻压和高等量秸秆覆盖免耕处理则表现相反。10cm土壤含水量为16.33%时土壤CO2排放通量最强,10cm土壤含水量在35%的程度上决定着土壤CO2排放通量的强弱。土壤CO2排放通量与土壤温度、土壤含水量呈正相关关系,达到极显著水平(Sig0.01)。  相似文献   

9.
烟气排放连续监测系统研究进展   总被引:1,自引:0,他引:1  
介绍了烟气排放连续监测的主要方法和研究进展.以天津蓝宇科工贸有限公司的烟气排放连续监测系统(CEMS)为例,重点介绍了紫外差分光学吸收光谱(DOAS)法用于SO2,NOx测量的原理及系统组成.  相似文献   

10.
本文介绍了一种用于大气污染监测的车载激光雷达.首先简要介绍了车载大气环境监测激光雷达系统的系统组成和测量原理.随后阐述了利用差分吸收测量原理(DIAL)即利用待测气体分子的光谱吸收特性测量该气体的浓度,通过对激光雷达测量得到回波数据进行处理和分析,获得O3、NO2、SO2等污染气体浓度的时空变化.并可以将污染物浓度数据根据用户需要和当时测量要求通过浓度廓线图、浓度随时间变化的分色图、浓度随扫描角变化的扫描分色图、和浓度三维立体变化分色图等方式实时显示出来.这种快速大范围的三维测量和显示O3、NO2等多种大气污染物浓度的大气监测手段为国内首创.(OE6)  相似文献   

11.
北京冬季大气SO2、NO2与O3的监测与分析   总被引:8,自引:2,他引:6  
利用差分光学吸收光谱(DOAS)技术于2006年2月对北京市丰台区的常规污染气体SO2、NO2及O3进行了连续监测,并对各污染物的日变化特征和污染源进行了分析和探讨.结果表明,丰台区NO2主要与汽车尾气的排放有关,以早晨和傍晚的上下班时段最重,凌晨和午后最轻;SO2浓度的日变化状况是气象条件日变化和污染源排放量日变化综合影响的结果,分别在早晨和夜间达到最大值,日变化曲线呈现"N"字型双峰结构;由O3和NO2的相关性分析可知,NO2对大气中O3的含量有着一定的贡献,大气中可能还存在其它重要的O3前体污染物.  相似文献   

12.
利用长程差分光学吸收光谱技术对黄浦江下游典型航道区域船舶排放的空气污染物进行高时间分辨率监测.研究表明SO2浓度受船舶尾气烟羽影响显著,浓度瞬时可增高2~4倍不等,峰值超过10×10-9(体积混合比);而由于来源情况更为复杂,NO2浓度的变化较为平缓,且由于受到周围机动车排放影响,日变化呈现出明显的双峰特征.受船流量影...  相似文献   

13.
为了实时监测工业烟气中SO2的排放,设计了一种基于差分吸收光谱技术的SO2浓度分析系统。该系统采用差分吸收光谱技术原理,在深入研究差分吸收光谱数据处理方法的基础上,在实验室状态下获取了与仪器分辨率相匹配的SO2标准吸收截面,采用光路反射设计和透紫石英镜片,改进了气体池结构。结果表明,该系统的实时测量浓度值与标准浓度值有较好的一致性,能够满足对SO2气体排放的高精度实时监测要求。  相似文献   

14.
车载多光路DOAS技术探测污染气体垂直柱浓度研究   总被引:1,自引:1,他引:0  
目前天顶方向的车载单光路(DOAS)系统在解析污染气体柱浓度时,都是以测量得到的斜柱浓度近似代表垂直柱浓度,这在计算通量时会造成一定的误差。结合多轴DOAS思想,研究了车载多光路DOAS技术,即在汽车移动平台上设置了两个不同仰角(90°、30°)的望远镜分别接收天顶散射光,利用DOAS方法解析两个方向的斜柱浓度,并结合大气辐射传输模型计算大气质量因子最终获得垂直柱浓度。相比于目前的天顶方向车载单光路系统,车载多光路DOAS系统具有高灵敏度、低不确定性等优点。利用此系统在淮南某电厂进行了测试实验,得到了电厂区域排放的NO2准确垂直柱浓度分布信息,并与天顶方向的斜柱浓度分布比较,两者在浓度趋势上具有较好的一致性。  相似文献   

15.
利用中国环境监测总站发布的2013年11月1日~2014年12月12日污染物实时浓度数据,分析了京津冀地区污染物变化特征。结果显示:PM2.5、PM10、SO2、NO2和CO浓度年平均值分别为95.3, 163.9, 54.7, 48.9 μg/m3, 1.5 mg/m3;五种污染物浓度都表现出冬季高夏季低的季节变化特征,但不同污染物在不同的月份又有其特殊的变化特征。APEC期间京津冀地区PM2.5、PM10、SO2、NO2和CO平均浓度分别为66.1, 123.7, 33.2,、48.5 μg/m3, 1.2 mg/m3。APEC期间京津冀地区PM2.5浓度是APEC前后一个月的60.1%、59.4%;APEC期间气态污染物CO、SO2、NO2浓度与APEC前一个月相当,但APEC后急剧增加。减排措施使京津冀地区PM2.5浓度削减40%左右,PM10削减35%左右,NO2削减10%左右,CO削减15%左右。  相似文献   

16.
长程差分吸收光谱(DOAS)技术已经越来越广泛地被用来测量大气中痕量气体浓度.在DOAS系统中,快速准确地获得光谱信号是正确反演痕量气体浓度的关键.文中在讨论空气质量DOAS系统组成的基础上,提出了快速扫描光谱仪的设计并对影响光谱性能的问题进行了讨论。定标谱线和实际测量结果表明:所研制的快速扫描光谱仪在进行合理的结构设计和正确的安装调试后能够满足空气质量监测系统的要求.  相似文献   

17.
机动车作为大气PM2.5的重要污染源,其运行产生的氨气(NH3)能与大气中的酸性气体相结合,形成二次污染物。为掌握北京市交通环境中氨的排放情况,探索影响交通环境氨浓度的因素及关系,利用DOAS仪器对交通环境(北航东门天桥下)和城市环境(北京市环境保护监测中心楼顶)NH3的浓度进行持续7个月的观测。结果显示污染物的排放量总体呈现夏季低,春秋季高的特点,交通环境中氨的日平均浓度水平(25.19µg /m3)高于城市环境(15.90µg /m3)。全天浓度变化趋势稳定,均有明显的高峰低谷变化,表明交通污染源对大气氨的贡献较为稳定。从相关性分析可以看出,NH3与PM2.5、NO2、NOx、CO相关性较高,与NO相关性较弱。分析得出3级以上的风有利于氨浓度的快速扩散和降低。对学院路全年各类型机动车排放量和逐小时的排放量进行计算,得到氨排放量主要来自小型客车(汽油)和出租车(汽油)(占97.9%)。  相似文献   

18.
2013年12月3日至2014年1月14日, 在湘潭市2个功能区(交通、商业、居民区和工业区) 采样点对大气PM2.5进行了采集, 并同步采集了SO2、NO2; 进而利用离子色谱法对PM2.5中二次水溶性无机离子(SO42−、NO3 和 NH4+ ) 的浓度进行测试分析。通过分析不同空气质量级别下硫、氮氧化速率(SOR 和 NOR) , 探讨了PM2.5中硫酸盐和硝酸盐的来源、形成机制和影响因素等。结果表明, 采样期间湘潭市PM2.5及其二次水溶性无机离子(SO42−、NO3 和 NH4+ ) 的质量浓度分别为148.34、56.19 g/m3, 其中 SO42−、NO3 和 NH4+分别占PM2.5 浓度的15.26%、14.06% 和8.57%, 三者累计值占PM2.5质量浓度的37.88%。随着PM2.5 浓度增加, 二次水溶性无机离子及其气态前体物SO2、NO2 的浓度也逐渐增加, 且“重度”污染时SO42−、NO3 和 NH4+ 浓度较“良”时分别上升了1.93、2.41、2.03倍。不同空气质量级别下PM2.5中的SO42−、NO3 主要以NH4NO3 和(NH4)2SO4 的形式存在, 但在“轻度”和“ 中度”污染时可能存在其它的硫酸盐和硝酸盐。采样期间SOR 和NOR 的平均值分别为0.18和0.17, 不同污染级别下二者均在0.15 以上(大于0.1), 表明湘潭市PM2.5中的硫酸盐和硝酸盐主要是经转化形成的二次污染物。大气PM2.5中NO3 /SO42− 为0.89, 不同空气质量级别下二者比值分别为0.78、0.99、0.82、0.97(均小于1), 表明湘潭市冬季PM2.5污染以燃煤源排放为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号