首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accuracy of quantitative analysis for Z-contrast images with a spherical aberration (Cs) corrected high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) using SrTiO3(0 0 1) was systematically investigated. Atomic column and background intensities were measured accurately from the experimental HAADF-STEM images obtained under exact experimental condition. We examined atomic intensity ratio dependence on experimental conditions such as defocus, convergent semi-angles, specimen thicknesses and digitalized STEM image acquisition system: brightness and contrast. In order to carry out quantitative analysis of Cs-corrected HAADF-STEM, it is essential to determine defocus, to measure specimen thickness and to fix setting of brightness, contrast and probe current. To confirm the validity and accuracy of the experimental results, we compared experimental and HAADF-STEM calculations based on the Bloch wave method.  相似文献   

2.
Kimoto K  Ishizuka K 《Ultramicroscopy》2011,111(8):1111-1116
We demonstrate spatially resolved diffractometry in which diffraction patterns are acquired at two-dimensional positions on a specimen using scanning transmission electron microscopy (STEM), resulting in four-dimensional data acquisition. A high spatial resolution of about 0.1 nm is achieved using a stabilized STEM instrument, a spherical aberration corrector and various post-acquisition data processings. We have found a few novel results in the radial and the azimuthal scattering angle dependences of atomic-column contrast in STEM images. Atomic columns are clearly observed in dark field images obtained using the excess Kikuchi band intensity even in small solid-angle detection. We also find that atomic-column contrasts in dark field images are shifted in the order of a few tens of picometers on changing the azimuthal scattering angle. This experimental result is approximately interpretable on the basis of the impact parameter in Rutherford scattering. Spatially resolved diffractometry provides fundamental knowledge related to various STEM techniques, such as annular dark field (ADF) and annular bright field (ABF) imaging, and it is expected to become an analytical platform for advanced STEM imaging.  相似文献   

3.
We report a local crystal structure analysis with a high precision of several picometers on the basis of scanning transmission electron microscopy (STEM). Advanced annular dark-field (ADF) imaging has been demonstrated using software-based experimental and data-processing techniques, such as the improvement of signal-to-noise ratio, the reduction of image distortion, the quantification of experimental parameters (e.g., thickness and defocus) and the resolution enhancement by maximum-entropy deconvolution. The accuracy in the atom position measurement depends on the validity of the incoherent imaging approximation, in which an ADF image is described as the convolution between the incident probe profile and scattering objects. Although the qualitative interpretation of ADF image contrast is possible for a wide range of specimen thicknesses, the direct observation of a crystal structure with deep-sub-angstrom accuracy requires a thin specimen (e.g., 10 nm), as well as observation of the structure image by conventional high-resolution transmission electron microscopy.  相似文献   

4.
Thin hard coatings in the thickness range of only a few micrometers deposited by physical vapour deposition (PVD) on components or tools can improve the friction and wear properties by several orders of magnitude. A 2 μm thick TiN (E=300 GPa) coating on a high-speed steel substrate with a bond layer at the interface between the coating and the substrate was modelled by micro-level three-dimensional finite-element method (3D FEM) in order to optimise a coated surface with regard to coating fracture. Both compliant low modulus (E=100 GPa) and stiff high modulus (E=500 GPa) bond layers at the coating/substrate interface of 200 and 500 nm thickness were investigated. First principal stresses were simulated for scratch test geometry in the load range of 7.5-15 N. Very high stress concentrations of above 5700 MPa tensile stresses were observed in the bond layer just behind the contact zone for the stiffer bond layer. The stiff bond layer generated 5 times higher tensile stress maxima compared to the compliant bond layer. There was approximately 3.5 times larger strain in the compliant bond layer compared to the stiff bond layer. The general coating design advice based on this exercise is that when a bond layer is used e.g. for coating/substrate adhesion improvement should the bond layer be less stiff than the coating not to generate high and critical tensile stresses. The thickness of the bond layer may vary and is not critical with respect to generated stresses in the surface.  相似文献   

5.
The accuracy and precision of thin-film interfacial mixing as measured with atom probe tomography (APT) are assessed by considering experimental and simulated field-evaporation of a Co/Cu/Co multilayer structure. Reconstructions were performed using constant shank angle and Z-scale reordering algorithms. Reconstruction of simulated data (zero intermixing) results in a 10-90% intermixing width of ∼0.2 nm while experiential intermixing (measured from multiple runs) was 0.47±0.19 and 0.49±0.10 nm for Co-on-Cu and Cu-on-Co interfaces, respectively. The experimental data were collected in analysis orientations both parallel and anti-parallel to film growth direction and the impact of this on the interfacial mixing measurements is discussed. It is proposed that the resolution of such APT measurements is limited by the combination of specimen shape and reconstruction algorithms rather than by an inherent instrumentation limit.  相似文献   

6.
We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In0.07Ga0.93N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In0.15Ga0.85N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In0.15Ga0.85N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.  相似文献   

7.
A study of the effects of small-angle specimen tilt on high-resolution annular dark field images was carried out for scanning transmission electron microscopes with uncorrected and aberration-corrected probes using multislice simulations. The results indicate that even in the cases of specimen tilts of the order of 1 degree a factor of 2 reduction in the contrast of the high-resolution image should be expected. The effect holds for different orientations of the crystal. Calculations also indicate that as the tilted specimen gets thicker the contrast reduction increases. Images simulated with a low-angle annular dark field detector show that tilt effects are more pronounced in this case and suggest that these low-angle detectors can be used to correct specimen tilt during scanning transmission electron microscopes operation.  相似文献   

8.
The effect of laser pulse energy on the composition measurement of an Al–Mg–Si–Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20–80 K and a voltage range of 2.5–5 kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9 nJ with a beam spot size of about 5 μm, providing an equivalent voltage pulse fraction, ∼14% at 80 K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.  相似文献   

9.
The imaging conditions for electron microscope studies of supported ultrafine particle catalysts have been investigated by multislice simulations. Images of Pt and ReO4 particles ranging from 0·4 to 2·3 nm in size were simulated in both plan view and profile view with a rutile (TiO2) support. It was shown that particle visibility varied greatly with the objective lens defocus. Optimum defocus was not favourable for supported particles in plan view since the ultrafine supported particles were least visible at this defocus. Underfocusing, especially at defoci corresponding to half-spacing fringes in the TiO2 support, led to improved visibility and resolution of the supported particles. Although the structure and shape of supported ultrafine particles should be resolved better with a 400-kV high-resolution electron microscope, their detectability is poorer than with a 200-kV instrument. An ReO4 cluster should be detectable at 200 kV on TiO2 supports up to 5 nm in thickness, whereas it is only likely to be detectable at 400 kV on supports up to 3 nm in thickness. The simulations confirmed that optimum defocus is most favourable for imaging supported particles in profile view. Atomic information for particles as small as a 13-atom Pt cuboctahedral cluster should be resolvable with a 400-kV instrument. The crystalline Ti monolayer observed on surfaces of Pt particles, which could explain the mechanism known as SMSI, was simulated as an example of profile imaging.  相似文献   

10.
The thickness-fringe method [Ishida et al., Philosophical Magazine 42 (1980) 453] for complete determination of the character of a dislocation Burgers vector has been performed in CaIrO3 perovskite and post-perovskite deformed at high pressures and high temperatures. By selecting several main zone axes and determining the number of terminating thickness fringes at the extremity of a dislocation from a wedge-shaped thin-foil specimen in weak-beam dark-field transmission electron microscope (TEM) images, the Burgers vectors were unambiguously determined. The results demonstrate that [1 0 0] screw and edge dislocations on the (0 1 0) slip plane are dominant in the post-perovskite phase. Curved [1 0 0] and [0 1 0] dislocations and straight 〈1 1 0〉 screw dislocations on a potential (0 0 1) slip plane were identified in the perovskite phase as well as a high density of {1 1 0} twins. Low-angle tilt boundaries consisting of different groups of parallel edge dislocations on the {1 1 0} and (0 0 1) planes indicate diffusion-assisted climb in perovskite at high temperatures. The differences in dislocation microstructures could be due to activations of limited numbers of slip systems for post-perovskite and of a large number of multiple slip systems for perovskite, which may result in the strong crystallographic preferred orientation (CPO) in post-perovskite and the lack of CPO in deformed perovskite.  相似文献   

11.
Transmission Electron Microscopy is used as a quantitative method to measure the shapes, sizes and volumes of gold nanoparticles created at a polymeric surface by three different in situ synthesis methods. The atomic number contrast (Z‐contrast) imaging technique reveals nanoparticles which are formed on the surface of the polymer. However, with certain reducing agents, the gold nanoparticles are additionally found up to 20 nm below the polymer surface. In addition, plan‐view high‐angle annular dark‐field scanning transmission electron microscopy images were statistically analyzed on one sample to measure the volume, height and effective diameter of the gold nanoparticles and their size distributions. Depth analysis from high‐angle annular dark‐field scanning transmission electron microscopy micrographs also gives information on the dominant shape of the nanoparticles.  相似文献   

12.
Klenov DO  Stemmer S 《Ultramicroscopy》2006,106(10):889-901
This paper reports on a study of the contributions to the image contrast of high-angle annular dark field (HAADF) images acquired in scanning transmission electron microscopy. Experimental HAADF images were obtained from a model system consisting of an epitaxial perovskite PbTiO3 film grown on a SrTiO3 single crystal. This sample allowed for the study of the intensities of a wide range of atomic numbers. The main objective of the paper was to quantify the influence of TEM foil thickness on the image contrast, but the effects of the annular detector inner angle and the probe forming lens focus were also studied. Sample thicknesses ranging from approximately 10 nm to more than 400 nm were investigated. The image contrast was relatively insensitive to changes in inner angle. The main impact of sample thickness was a rapid increase in a background intensity that contributed equally to the intensities of the atomic columns and the channels between them. The background intensity and its increase with thickness reflected the average atomic number of the crystal. Subtraction of the background intensity allowed for a quantitative interpretation of image contrast in terms of atomic numbers and comparison with multislice image simulations. The consequences for the analysis of interfaces in terms of atom column occupancies are discussed.  相似文献   

13.
Fourier ring correlation and root-mean-square contrast of pairs of images, taken under identical conditions, were used as criteria of image quality for comparing unfiltered with zero-loss energy-filtered imaging using a TEM equipped with a post-column energy filter. For three different specimens (amorphous carbon film, macromolecules in light negative stain, virus particles in deep negative stain) the dependence of these quantities on electron dose, specimen thickness and defocus was investigated. A model, based on simple assumptions, was used to describe quantitatively their dependence on electron dose and specimen thickness. It was found that energy filtering is most advantageous for low-dose imaging and small defocus values. The gain due to energy filtering strongly increases with specimen thickness, whereby the dependence is linear for light scattering elements. For thick specimens, the gain by energy filtering is more pronounced in the resolution range between 4 and 2 nm than for lower spatial frequencies.  相似文献   

14.
15.
The projected electrostatic potential is reconstructed from a high-resolution exit wave function through a maximum-likelihood refinement algorithm. The theory of an already existing algorithm [1] is extended to include the effects of phenomenological absorption. Various tests with a simulated exit wave function of YBa2Cu3O7 in [1 0 0] orientation used as a source show that the reconstruction is successful, regardless of the strongly differing scattering power of atomic columns, even for the case of strong dynamical diffraction. Object thickness, the amount of absorption, and a residual defocus aberration of the wave function—parameters often unknown or difficult to measure in experiments—can be determined accurately with the aid of the refinement algorithm in a self-consistent way. For the next generation of instruments, with information limits of 0.05 nm and better, reconstruction accuracies of better than 2% can be expected, which is sufficient to measure and display the structural and chemical information with the aid of an accurate projected potential map.  相似文献   

16.
Electron holography is the highest resolving tool for dopant profiling at nanometre-scale resolution. In order to measure the object areas of interest in a hologram, both a wide field of view and a sufficient lateral resolution are required. The usual path of rays for recording holograms with an electron biprism using the standard objective lens does not meet these requirements, because the field of view amounts to some 10 nm only, however, at a resolution of 0.1 nm better than needed here. Therefore, instead of the standard objective lens, the Lorentz lens is widely used for holography of semiconductors, since it provides a field of view up to 1000 nm at a sufficient lateral resolution of about 10 nm. Since the size of semiconductor structures is steadily shrinking, there is now a need for better lateral resolution at an appropriate field of view. Therefore, additional paths of rays for recording holograms are studied with special emphasis on the parameters field of view and lateral resolution. The findings allow an optimized scheme with a field of view of 200 nm and a lateral resolution of 3.3 nm filling the gap between the existing set-ups. In addition, the Lorentz lens is no longer required for investigation of non-magnetic materials, since the new paths of rays are realized with the standard objective lens and diffraction lens. An example proves the applicability of this arrangement for future semiconductor technology.  相似文献   

17.
Lubricant film thickness measurements were made for bovine serum solutions under steady state rolling and sliding. The effect of low (30 MPa) and high contact pressures (200 MPa) was examined. In the high pressure rolling tests BS initially formed films 5-50 nm thick over the speed range. However, in subsequent speed sweeps, a relatively speed independent film of 40-50 nm developed. In some cases thick (up to 100 nm) films were formed at low speeds; this behaviour was considered representative of high-viscosity surface layers rather than of solid films. At the end of each test residual boundary films of 9-19 nm were measured under static loading. These are attributed to the multilayer adsorption of protein molecules and will provide surface protection during stance or on initiation of gait. The results at low pressure showed that much thicker films (∼60-80 nm) were formed over the same speed range. Again thicker films were formed at the lower speeds. There was significant scatter in the film thickness results, possibly due to the inherent nature of the fluid, which is an inhomogeneous biological solution. The film thickness/speed behaviour was not representative of a simple Newtonian fluid and this has considerable implications for the development of predictive film thickness models and new designs of artificial hip joints.  相似文献   

18.
Scanning transmission electron microscopy (STEM) tomography was applied to biological specimens such as yeast cells, HEK293 cells and primary culture neurons. These cells, which were embedded in a resin, were cut into 1-microm-thick sections. STEM tomography offers several important advantages including: (1) it is effective even for thick specimens, (2) 'dynamic focusing', (3) ease of using an annular dark field (ADF) mode and (4) linear contrasts. It has become evident that STEM tomography offers significant advantages for the observation of thick specimens. By employing STEM tomography, even a 1-microm-thick specimen (which is difficult to observe by conventional transmission electron microscopy (TEM)) was successfully analyzed in three dimensions. The specimen was tilted up to 73 degrees during data acquisition. At a large tilt angle, the specimen thicknesses increase dramatically. In order to observe such thick specimens, we introduced a special small condenser aperture that reduces the collection angle of the STEM probe. The specimen damage caused by the convergent electron beam was expected to be the most serious problem; however, the damage in STEM was actually smaller than that in TEM. In this study, the irradiation damage caused by TEM- and STEM-tomography in biological specimens was quantitatively compared.  相似文献   

19.
Chen YM  Ohkubo T  Hono K 《Ultramicroscopy》2011,111(6):562-566
We have investigated the laser assisted field evaporation phenomena of ZnO, and MgO to explore the feasibility of quantitative three dimensional atom probe analyses of insulating oxides. To assist the field evaporation of these oxides, the usage of short wavelength 343 nm ultraviolet (UV) laser was found to be more effective than 515 nm green laser. We observed field ion microscopy (FIM) image expansion and mass peak shifting when 343 nm laser was irradiated on MgO. This phenomenon can be attributed to the laser induced electron excitation which causes the reduction of the resistivity of the specimen.  相似文献   

20.
Experimental atomic resolution bright and high angle dark field transmission electron microscopy images of mono- and few-layer graphene and boron nitride, as well as of turbostratic arrangements in both materials, are compared to their simulated counterparts. Changes in the images according to defocus, layer number and accelerating voltage are discussed. It emerges that simulations with realistic microscope parameters accurately depict experimental graphene and boron nitride images and present a reliable tool for their interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号