首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two crop rotations dominated by spring cereals and grass/clover leys on a clay soil were studied over 2 years with respect to nitrogen (N) and phosphorus (P) leaching associated with pig or dairy slurry application in April, June and October. Leaching losses of total N (TN), total P (TP), nitrate-N and dissolved reactive P (DRP) were determined in separately tile-drained field plots (four replicates). Mean annual DRP leaching after October application of dairy slurry (17 kg P ha?1) to growing grass/clover was 0.37 kg ha?1. It was significantly higher than after October application of pig slurry (13 kg ha?1) following spring cereals (0.16 kg ha?1) and than in the unfertilised control (0.07 kg P ha?1). The proportion of DRP in TP in drainage water from the grass/clover crop rotation (35 %) was higher than from the spring cereal rotation (25 %) and the control (14 %). The grass/clover rotation proved to be very robust with respect to N leaching, with mean TN leaching of 10.5 kg ha?1 year?1 compared with 19.2 kg ha?1 year?1 from the cereal crop rotation. Pig slurry application after cereals in October resulted in TN leaching of 25.7 kg ha?1 compared with 7.0 kg ha?1 year?1 after application to grass/clover in October and 19.1 kg ha?1 year?1 after application to spring cereals in April. In conclusion, these results show that crop rotations dominated by forage leys need special attention with respect to DRP leaching and that slurry application should be avoided during wet conditions or combined with methods to increase adsorption of P to soil particles.  相似文献   

2.
The long-term residual effects of K application rates and cultivars for preceding cotton (Gossypium hirsutum L.) on subsequent maize (Zea mays L.) and the influence of N rates applied to preceding cotton and to maize on the residual K effects were examined on maize under no-tillage in the United States. Two field experiments were conducted on a no-till Loring silt loam at Jackson, TN during 1995–2008 with N rates (90 and 179 kg ha?1) × K rates (28, 56, and 84 kg ha?1) and cotton cultivars (determinate and indeterminate) × K rates (56 and 112 kg ha?1) as the treatments, respectively, in the preceding cotton seasons. Maize was planted under no-tillage on the preceding cotton experiments without any K application during 2009 through 2011. The residual effects of K rates applied to preceding cotton on soil K levels were significantly influenced by the N rates applied to preceding cotton and to maize when the data were combined from 2008 to 2011. Relative to the standard N management practices of 168 kg N ha?1 for maize and 90 kg N ha?1 for preceding cotton, the higher N application rate 269 kg N ha?1 to maize and 179 kg N ha?1 to preceding cotton reduced the residual effects of K rates on soil K. However, cultivar for preceding cotton did not affect the residual effects of K fertilizer on soil K fertility, leaf K nutrition, plant growth, or grain yield of subsequent maize on a high K field.  相似文献   

3.
The effects of green manure, crop sequence and off-farm composts on selected soil quality parameters were assessed in a three-year organic potato (Solanum tuberosum L.) rotation in Eastern Canada. Three crop sequences varying in preceding green manure [red clover (RCl) + RCl, and beans/buckwheat or carrots + oats/peas/vetch mixture (OPV)] as main plots and four fertility treatments applied in the potato phase only [control; inorganic fertilizer; municipal solid waste compost (MSW); composted paper mill biosolid (PMB)] as subplots were compared. In 2008 and 2010, changes in selected soil quality parameters (0–15 cm) were assessed prior to planting of potatoes and at potato tuber initiation stage. Potentially mineralizable nitrogen (N) and the acid phosphatase enzyme activity average values across years were greater following RCl (1.51 abs and 622 kg ha?1) compared with OPV (1.32 abs and 414 kg ha?1) at potato planting. Soil NO3–N average value was greater following RCl compared with OPV (63 vs. 52 kg ha?1) at tuber initiation. For the other measured parameters, OPV and RCl were similar. The soil organic carbon (C) and particulate organic matter-C were greater under PMB and MSW (31.1 and 7.57 kg ha?1) compared with fertilizer treatment (27.9 and 6.05 kg ha?1). The microbial biomass C and microbial biomass quotient were greater under MSW (216 kg ha?1 and 0.73 %) than PMB and fertilizer (147 kg ha?1 and 0.50 %) across crop rotations. Annual legume green manures and off-farm composts can be used to satisfy potato N requirement and maintains soil quality in organic potato rotations.  相似文献   

4.
Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined the effect of 8 years of tillage, crop rotation, and cultural practice on N balance based on N inputs and outputs and soil N sequestration rate under dryland cropping systems in the northern Great Plains, USA. Tillage systems were no-tillage (NT) and conventional tillage (CT) and crop rotations were continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–pea (Pisum sativum L.) (W–P), spring wheat–barley (Hordeum vulgaris L.) hay–pea (W–B–P), and spring wheat–barley hay–corn (Zea mays L.)–pea (W–B–C–P). Cultural practices were traditional (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and improved (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height). Total N input due to N fertilization, pea N fixation, atmospheric N deposition, crop seed N, and nonsymbiotic N fixation was greater with W–B–C–P than CW, regardless of tillage and cultural practices. Total N output due to aboveground biomass N removal and N losses due to denitrification, volatilization, plant senescence, N leaching, gaseous N (NOx) emissions, and surface runoff were not different among treatments. Nitrogen sequestration rate at 0–20 cm from 2004 to 2011 varied from 29 kg N ha?1 year?1 in CT with W–P to 89 kg N ha?1 year?1 in NT with W–P. Nitrogen balance varied from ? 39 kg N ha?1 year?1 in NT with CW and the improved practice to 41 kg N ha?1 year?1 in CT with W–P and the traditional practice. Because of legume N fixation and increased soil N sequestration rate, diversified crop rotations reduced external N inputs and increased aboveground biomass N removal, N flow, and N balance compared with monocropping, especially in the CT system. As a result, diversified legume–nonlegume crop rotation not only reduced the cost of N fertilization by reducing N fertilization rate, but also can be productive by increasing N uptake and N surplus and environmentally sustainable by reducing N losses compared with nonlegume monocropping, regardless of cultural practices in dryland agroecosystems.  相似文献   

5.
Contamination of groundwater with nitrate (NO3) derived from agricultural activity is serious problem in many countries worldwide. We investigated the annual (growing and non-growing seasons) behavior of NO3–N in the soil pore water of cropped Andosols and Gray lowland soils under eight crop groups (Type A: paddy rice, Type B: winter crops, Type C: vegetables 1, Type D: vegetables 2, Type E: vegetables and forages, Type F: legume crops, Type G: orchard, and Type H: grass). In the vegetable group (Type C) and the orchard group (Type G), which required large amounts of fertilizer and frequent top-dressing, NO3–N concentrations in the soil pore water were extremely high. In these agricultural lands, it was clear that the inorganic nitrogen produced by nitrification in surface soil was dominantly discharged from a depth of 90 cm in July to September. The descending order of the amount of discharge of NO3–N (N-discharge) was Type C > G > D > E > F > B > H > A for the Andosol, and Type G > C > F > D > E > B > H > A for the Gray lowland soil. If fertilization of the vegetables and orchard was performed based on the standard application amount, the annual average NO3–N concentration at a depth of 90 cm exceeds 10 mg L?1. To reduce the risk of groundwater contamination by NO3–N, we calculated the annual cumulative water flux density and annual cumulative NO3–N flux density. We examined the calculated fertilizer amount and proposed reduced fertilizer application amounts so that the annual average concentration of NO3–N in soil pore water would not exceed 10 mg L?1. The standard application amount of nitrogen fertilizer for vegetables should be reduced by 65.8 and 30.8 kg ha?1 in the Andosol and the Gray lowland soil, respectively. We also proposed that the standard application amount of nitrogen fertilizer be reduced by 59.9 and 40.7 kg ha?1 in Andosol orchards and Gray lowland soil orchards, respectively.  相似文献   

6.
Nitrogen (N) is the most limiting nutrient in crop production. Legumes such as red clover can provide N through biofixation, but securing nitrogen in soil for subsequent crop production must also be considered. Variety selection and management in red clover cropping can influence soil mineral nitrogen (SMN) availability. A field trial to investigate this was conducted with six varieties, under one and two cut management, over 2 years. Dry matter (DM) and N yield, Sclerotinia resistance and SMN availability were assessed. Low DM and N yields (1.6–2.4 t DM ha?1 and 54–83 kg N ha?1) in the first year of cultivation allowed ~?40 kg N ha?1 to become available, but high DM and N yields (10.2–14.6 t DM ha?1 and 405–544 kg N ha?1) allowed ~?20 kg N ha?1 to become available. Wetter weather in 2015 caused significantly more SMN losses than 2016 (20 kg N ha?1 in 2015 and 5 kg N ha?1 in 2016). The varieties Amos, Maro and Milvus lost significantly more SMN in the winter period, which may have been caused by more severe infection of Sclerotinia (these varieties were 50–80% more severely infected other varieties). Varietal effect was non-significant for winter losses in 2016, where no significant varietal differences in Sclerotinia infection were observed. 1 cut made ~?41 kg N ha?1 available in the growing season of 2015, whilst 2 cut made significantly less (37 kg N ha?1). Cutting was non-significant in 2016 but 1 cut was less susceptible to losses in the winter period. Cutting in 2015 did not significantly affect herbage DM and N yields in the first or second cut of 2016.  相似文献   

7.
Restoring soil fertility in smallholder farming systems is essential to sustain crop production. An experiment was conducted in 2011 and 2012 to study the effect of compost and inorganic fertilizer application on soil chemical properties and wheat yield in northwest Ethiopia. Full factorial combinations of four levels of compost (0, 4, 6, 8 t ha?1) and three levels of inorganic fertilizers (0–0, 17.3–5, 34.5–10 kg N–P ha?1) were compared in a randomized complete block design with three replications. In 2012, two sets of trials were conducted: one was the repetition of the 2011 experiment on a new experimental plot and the second was a residual effect study conducted on the experimental plots of 2011. Results showed that in the year of application, applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 gave the highest significant grain yield. In the residual effect trial, 8 t compost ha?1 with 34.5–10 kg N–P ha?1 gave 271 % increase over the control. Grain protein content increased 21 and 16 % in the current and residual effect trials, respectively, when 8 t compost ha?1 was applied; it increased 11 and 14 % in the current and residual effect trials, respectively, when 34.5–10 kg N–P ha?1 was applied. Under the current and residual effects of 8 t compost ha?1, SOM increased 108 and 104 %; available P 162 and 173 %; exchangeable Ca 16.7 and 17.4 %; and CEC 15.4 and 17.1 %, respectively. Applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 is economically profitable with 844 % MRR.  相似文献   

8.
Proper management of synthetic nitrogen (N) fertilizer can reduce direct N2O emission from soil and indirect CO2 emission from production and transportation of synthetic N. In the late 1990s, the average application rates of synthetic N were 212, 207 and 207 kg ha?1, respectively, for rice, wheat, and maize in China’s croplands. But research suggests that the optimal synthetic N application rates for the main grain crops in China should be in the range of 110–150 kg ha?1. Excessive application of synthetic N has undoubtedly resulted in massive emission of greenhouse gases. Therefore, optimizing N application rates for grain crops in China has a great potential for mitigating the emission of greenhouse gases. Nevertheless, this mitigation potential (MP) has not yet been well quantified. This study aimed at estimating the MP of N2O and CO2 emissions associated with synthetic N production and transportation in China based on the provincial level statistical data. Our research indicates that the total consumption of synthetic N on grain crops in China can be reduced by 5.0–8.4 Tg yr?1 (28–47 % of the total consumption) if the synthetic N application rate is controlled at 110–150 kg ha?1. The estimated total MP of greenhouse gases, including direct N2O emission from croplands and indirect CO2 emission from production and transportation of synthetic N, ranges from 41.7 to 70.1 Tg CO2_eq. yr?1. It was concluded that reducing synthetic N application rate for grain crops in China to a reasonable level of 110–150 kg ha?1 can greatly reduce the emission of greenhouse gases, especially in the major grain-crop production provinces such as Shandong, Henan, Jiangsu, Hebei, Anhui and Liaoning.  相似文献   

9.
Nitrogen is the largest input used by farmers, but they often apply excessive quantities of N fertilizer, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-tester? and RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these objectives, two field trials were established with three factors: growing season, three kinds of initial fertilizers [dairy slurry (40 t ha?1), sheep manure (40 t ha?1) and conventional (no organic fertilizer on basal dressing and 40 kg N ha?1 at tillering)] and five N mineral fertilization dose applied at stem elongation. The proxy tools for diagnosing the N nutritional status were used at stem elongation before applying the mineral N. Proxy tool readings as indicators of the nitrogen nutritional status of the field were as good as soil mineral nitrogen (Nmin) or Nitrogen Nutrition Index (NNI). When the readings were approximately 65% (as compared to an overfertilized control), the optimal N rate applied at stem elongation was slightly higher (10–20 kg N ha?1) than the readings at 88%. The first N topdressing at the beginning of tillering could be avoided when manure was applied before sowing, unfolding new possibilities for a later application that might improve the protein content with lower likely fertilization costs.  相似文献   

10.
Nitrogen use efficiency in different rice-based rotations in southern China   总被引:2,自引:0,他引:2  
Experiments in fields and micro-plots were conducted to investigate the optimal cropping system and nitrogen (N) fertilizer application rate and timing. The treatments consisted of Chinese milk vetch–rice (CMV–R) rotation with five N fertilizer application rates (0, 120, 180, 240, 300 kg N ha?1) during the rice-growing season, and fallow–rice (F–R) and wheat–rice (W–R) rotations with only one N application rate (240 kg N ha?1) each. Rice yield increased with increasing N fertilizer application rate under CMV–R rotation, and achieved highest yield under CMV–R180. There is a decreasing trend when N application rate exceeded 180 kg N ha?1. Rice yield was always higher under CMV–R240 compared to W–R240 and F–R240. During the 2012 rice season, the fertilizer N-use efficiency, residual N fertilizer in soil and N fertilizer recovery efficiency of CMV–R180 reached largest under CMV–R rotation with different N treatments. Furthermore, the fertilizer N-use and recovery efficiencies of CMV–R240 and F–R240 were far higher than those of W–R240. In 2013, fertilizer N-use efficiency was the highest (>?50%) at the heading stage, which was nearly twice as much as the efficiencies during the basal and tillering stages. The N fertilizer loss rate during the basal stage was significantly higher than that at the tillering and heading stages, which was up to 60%. CMV–R rotation with 180 kg N ha?1 achieved the highest rice yield of 9454 kg ha?1 and high fertilizer N-use efficiency (40.6%) under a relatively lower N application rate. Therefore, Chinese milk vetch–rice cropping system could be a promising approach for decreasing fertilizer inputs to prevent N pollution problems and increasing rice yield, especially for the intensive rice-based cropping systems in southern China.  相似文献   

11.
Finger millet (Eleusine coracana (L.) Gaertn) is an important food crop of semi-arid to sub-humid Africa where little is known of its response to applied nutrients. Yield responses to nitrogen (N), phosphorus (P) and potassium (K) together with a diagnostic treatment (S, Mg, Zn, B) were determined from field research conducted in western Kenya and eastern and central Uganda. Grain yield was not affected by applied nutrients in some sites in Kenya, likely due to other prevailing stresses. Grain yield increased with N application for all sites and years in Uganda by a mean of 127% from the no N treatment (0 N) yield of 1.00 Mg ha?1. Grain yield increases ranged from 0.76 to 1.40 Mg ha?1 with 30 kg N ha?1 applied, with little added increase with >60 kg N ha?1. The mean economically optimal rate for N in Uganda was 72 and 43 kg N ha?1 with expected net returns to N of 166 and 279 $ ha?1 when the N cost to grain value was 3 and 9 kg kg?1, respectively. Yield was increased with P and K application at two of four production areas of Uganda. Yield was increased by >20% with application of Mg–S–Zn–B in addition to N–P–K for all sites in Uganda with foliar concentrations indicating possible S and B deficiency. There is great profit potential in Uganda, and less for Kenya for N, but not for P and K, application to finger millet. Response to S and B needs further exploration.  相似文献   

12.
Management intensification has raised concerns about the sustainability of homegardens in the Nuba Mountains, Sudan. This study aimed at assessing the sustainability of these agroecosystems following the approach of carbon (C) and nutrient balances. Three traditional (low input) and three intensified (high input) homegardens were selected for monitoring of relevant input and output fluxes of C, nitrogen (N), phosphorus (P) and potassium (K). The fluxes comprised those related to management activities (soil amendments, irrigation, and biomass removal) as well as estimates of biological N2 fixation, C fixation by photosynthesis, wet and dry deposition, gaseous emission, and leaching. Annual balances for C and nutrients amounted to ?21 kg C ha?1, ?70 kg N ha?1, 9 kg P ha?1 and ?117 kg K ha?1 in high input homegardens and to ?1,722 kg C ha?1, ?167 kg N ha?1, ?9 kg P ha?1 and ?74 kg K ha?1 in low input homegardens. Photosynthesis C was the main C input flux with averaged of 7,047 and 5,610 kg C ha?1 a?1 in high and low input systems, respectively. Biological N2 fixation (17 kg N ha?1 a?1) was relevant only in low input systems. In both systems, the annual input of 77 kg K ha?1 through dust was highly significant and annual gaseous C losses of about 5,900 kg C ha?1 were the main C loss. In both garden types, the removal of biomass accounted for more than half of total nutrient exports of which one-third resulted from weeding and removal of plant residues and two-third from harvest. The observed negative nutrient balances may lead to a long-term decline of crop yields. Among other measures the reuse of C and nutrients in biomass removals during the cleaning of homegardens may allow to partially close C and nutrient cycles.  相似文献   

13.
This paper describes the dynamics of soil N mineralization in the experimental intensive dairy farming system ‘De Marke’ on a dry sandy soil in the Netherlands. We hypothesized that knowledge of the effects of crop rotation on soil N mineralization and of the spatial and temporal variability of soil N mineralization in a farming system can be used to better synchronize N application with crop N requirements, and hence to increase the recovery of applied N and to reduce N losses. Soil N mineralization was recorded continuously in the soil layer 0–0.30 m, from 1992 to 2005, using a sequential in situ coring technique on six observation plots, of which two were located in permanent grassland and four in crop rotations with a 3 year grassland phase and an arable phase of 3 or 5 years, dominated by maize. Average annual soil N mineralization was highest under permanent grassland: 381 kg ha?1 and lowest under ≥3rd years arable crops: 184 kg ha?1. In temporary grassland, soil N mineralization increased in the order: 1st year, 2nd year, 3rd year grassland and in arable crops after grassland mineralization decreased in the order: 1st year, 2nd year, ≥3rd years. Total mineral N input, i.e. the sum of N mineralization and mineral N supply to soil, exceeded crop N requirements in 1st year maize and was lower than the requirements in 1st year temporary grassland. N mineralization in winter, outside the growing season, was 77 kg ha?1 in maize and 60 kg ha?1 in grassland. This points at the importance of a suitable catch crop to reduce the susceptibility to N leaching. Temporal and spatial variability of soil N mineralization was high and could not be related to known field conditions. This limits the extent to which N fertilization can be adjusted to soil N mineralization. Variability increased with the magnitude of soil N mineralization. Hence, situations with high soil N mineralization may be associated with high risks for N losses and to reduce these risks a strong build-up of soil organic N should be avoided. This might be achieved, for instance, by fermenting slurry before application on farmland to enhance the fraction mineral N in slurry at the expense of organic N.  相似文献   

14.
This study evaluated the effect of a dairy system involving grazing over the winter on a soil surface N balance (SSB) and soluble N content in a clay loam soil in comparison with early spring calving systems. The SSBs were calculated for each paddock within three dairy systems for 2 years. Inputs included N entering the soil in fertilizer, slurry, excreta, atmospheric deposition and biological N fixation. Outputs consisted of N leaving the soil in harvested and grazed herbage. Nitrogen surplus was calculated as a difference between N inputs and outputs. Soluble N was assessed in soil extracts at three depths to 0.9 m. The management of the systems resulted in N surplus from 113 to 161 kg N ha?1 year?1 and N use efficiency of the soil component from 63 to 72 % without significant variation between the systems. The dairy system had no effect on soil N content as its variation was likely buffered by inherent soil properties (heavy texture, high C, pH) and the presence of shallow groundwater. The biochemical anaerobic reduction processes (i.e. denitrification) likely ensured soil oxidised N consistently low (<20 kg ha?1). Consequently, the system involving grazing over the winter on these soils did not create an additional environmental pressure via N losses to groundwater and N2O emissions compared with early spring calving systems. The size of soil inorganic N pools was mainly controlled by the hydrological factors and soil temperature, which are the most important factors controlling microbial activity, biochemical processes and leaching.  相似文献   

15.
Meeting food security requirements in sub-Saharan Africa (SSA) will require increasing fertilizer use to improve crop yields, however excess fertilization can cause environmental and public health problems in surface and groundwater. Determining the threshold of reasonable fertilizer application in SSA requires an understanding of flow dynamics and nutrient transport in under-studied, tropical soils experiencing seasonal rainfall. We estimated leaching flux in Yala, Kenya on a maize field that received from 0 to 200 kg ha?1 of nitrogen (N) fertilizer. Soil pore water concentration measurements during two growing seasons were coupled with results from a numerical fluid flow model to calculate the daily flux of nitrate-nitrogen (NO3 ?-N). Modeled NO3 ?-N losses to below 200 cm for 1 year ranged from 40 kg N ha?1 year?1 in the 75 kg N ha?1 year?1 treatment to 81 kg N ha?1 year?1 in the 200 kg N ha?1 treatment. The highest soil pore water NO3 ?-N concentrations and NO3 ?-N leaching fluxes occurred on the highest N application plots, however there was a poor correlation between N application rate and NO3 ?-N leaching for the remaining N application rates. The drought in the second study year resulted in higher pore water NO3 ?-N concentrations, while NO3 ?-N leaching was disproportionately smaller than the decrease in precipitation. The lack of a strong correlation between NO3 ?-N leaching and N application rate, and a large decrease in flux between 120 and 200 cm suggest processes that influence NO3 ?-N retention in soils below 200 cm will ultimately control NO3 ?-N leaching at the watershed scale.  相似文献   

16.
In the Seine Basin, characterised by intensive arable crops, most of the surface and groundwater is contaminated by nitrate (NO3 ?). The goal of this study is to investigate nitrogen leaching on commercial arable crop farms in five organic and three conventional systems. In 2012–2013, a total of 37 fields are studied on eight arable crop rotations, for three different soil and climate conditions. Our results show a gradient of soil solution concentrations in function of crops, lower for alfalfa (mean 2.8 mg NO3-N l?1) and higher for crops fertilised after legumes (15 mg NO3-N l?1). Catch crops decrease nitrate soil solution concentrations, below 10 mg NO3-N l?1. For a full rotation, the estimated mean concentrations is lower for organic farming, 12 ± 5 mg NO3-N l?1 than for conventional farming 24 ± 11 mg NO3-N l?1, with however a large range of variability. Overall, organic farming shows lower leaching rates (14–50 kg NO3-N ha?1) than conventional farms (32–77 kg NO3-N ha?1). Taking into account the slightly lower productivity of organic systems, we show that yield-scaled leaching values are also lower for organic (0.2 ± 0.1 kg N kg?1 N year?1) than for conventional systems (0.3 ± 0.1 kg N kg?1 N year?1). Overall, we show that organic farming systems have lower impact than conventional farming on N leaching, although there is still room for progress in both systems in commercial farms.  相似文献   

17.
Nitrogen loss and rice profits with matrix-based slow-release urea   总被引:2,自引:0,他引:2  
Paddy fields account for a large proportion of cultivated land, with huge N consumption each year. Reducing N loss via application of low-cost slow-release fertilizers is beneficial for eco-friendly rice production. The current study aimed to investigate the effects of matrix-based urea on soil N availability, rice yield, agronomical efficiency (AE), and rice profits. A 2-year field experiment was conducted during 2015 and 2016 following a randomized block design. It included three treatments, i.e., control test (CK, without urea application), common urea (CU, 150 kg N ha?1), and matrix-based urea (MU, 150 kg N ha?1). Besides, three laboratory experiments were conducted to investigate the N leaching, ammonia volatilization, and slow-release mechanism. Results showed that application of MU increased rice yields by > 10%, biomass by > 6%, and AE by > 30% in both seasons. Greater yield, biomass, and AE in MU were largely attributed to higher soil available N, resulted from lower risk of N leaching and ammonia volatilization. Aggregate structure was partly responsible for lower N loss in MU. Greater soil available N in MU increased rice height, leaf area, root area, leaf total chlorophyll, and activity of nitrate reductase and glutamine synthetase in flag leaves, and thus favored rice growth. Compared with CU, MU increased fertilizer cost by about 23 USD ha?1, but increased rice profits by > 230 USD ha?1 due to greater yield. Overall, matrix-based urea is suitable for application in field rice production, due to its low risk of N loss and acceptable profitability.  相似文献   

18.
Enhancing crop production by maintaining a proper synchrony between soil nitrogen (N) and crop N demand remains a challenge, especially in under-studied tropical soils of Sub-Saharan Africa (SSA). For two consecutive cropping seasons (2013–2015), we monitored the fluctuation of soil inorganic N and its availability to maize in the Tanzanian highlands. Different urea-N rates (0–150 kg N ha?1; split into two dressings) were applied to two soil types (TZi, sandy Alfisols; and TZm, clayey Andisols). In the early growing season, soil mineralized N was exposed to the leaching risk due to small crop N demand. In the second N application (major N supply accounting for two-thirds of the total N), applied urea was more efficient in increasing soil inorganic N availability at TZm than at TZi. Such effect of soil type could be the main contributor to the higher yield at TZm (up to 4.4 Mg ha?1) than that at TZi (up to 2.6 Mg ha?1) under the same N rate. The best-fitted linear-plateau model indicated that the soil inorganic N availability (0–0.3 m) at the tasseling stage largely accounted for the final yield. Further, yields at TZi were still limited by N availability at the tasseling stage due to fast depletion of applied-N, whereas yields plateaued at TZm once N availability was above 67 kg N ha?1. Our results provided a valuable reference for designing the N management to increase yield, while minimizing the potentially adverse losses of N to the environment, in different agro-ecological zones in SSA.  相似文献   

19.
After cole crop harvest, over 400 kg N ha?1 may remain in the field as crop residues and soil mineral N. Thus, methods to reduce potential post-harvest N losses are needed. Urea with 5 % 15N excess was incorporated in mini-plots to produce 15N enriched broccoli (Brassica olecerea var italica L.). The fate of above-ground crop residue-derived N (15Nresidue-above) and below-ground residual fertilizer or root biomass N (15Nresidue-below) were studied from broccoli harvest (Aug and Sept 2011) to spring wheat (Triticum durum L.) harvest (July 2012), with and without an amendment of used cooking oil. The 15Nresidue-below remained mostly as organic N, was not influenced by the amendment, and was resistant to post-harvest losses. With the oil amendment, soil mineral 15Nresidue-above was reduced by 19 kg ha?1 and microbial biomass 15Nresidue-above was increased by 21 kg ha?1 2 weeks after broccoli harvest, indicating immobilization of 15Nresidue-above and reduced potential N losses. At spring wheat harvest, amended soil had greater total, organic, and mineral 15Nresidue-above compared to the unamended control, by 44, 43, and 0.75 kg ha?1, respectively. The amendment increased the recovery of 15Nresidue-above in the soil total N pool by 209 % at spring wheat harvest, and it did not affect spring wheat yields or plant 15Nresidue-above content. It is possible that the amendment facilitated the incorporation of 15Nresidue-above into organic compounds, which were less susceptible to losses. Growers should consider applying used cooking oil at harvest to minimize potential N losses and to increase the soil organic N fraction.  相似文献   

20.
Biogeochemical processes regulating cropland soil nitrous oxide (N2O) emissions are complex, and the controlling factors need to be better understood, especially for seasonal variation after fertilization. Seasonal patterns of N2O emissions and abundances of archaeal ammonia monooxygenase (amoA), bacterial amoA, nitrate reductase (narG), nitrite reductase (nirS/nirK), and nitrous oxide reductase (nosZ) genes in long-term fertilized wheat–maize soils have been studied to understand the roles of microbes in N2O emissions. The results showed that fertilization greatly stimulated N2O emission with higher values in pig manure-treated soil (OM, 2.88 kg N ha?1 year?1) than in straw-returned (CRNPK, 0.79 kg N ha?1 year?1) and mineral fertilizer-treated (NPK, 0.90 kg N ha?1 year?1) soils. Most (52.2–88.9%) cumulative N2O emissions occurred within 3 weeks after fertilization. Meanwhile, N2O emissions within 3 weeks after fertilization showed a positive correlation with narG gene copy number and a negative correlation with soil NO3? contents. The abundances of narG and nosZ genes had larger direct effects (1.06) than ammonium oxidizers (0.42) on N2O emissions according to partial least squares path modeling. Stepwise multiple regression also showed that log narG was a predictor variable for N2O emissions. This study suggested that denitrification was the major process responsible for N2O emissions within 3 weeks after fertilization. During the remaining period of crop growth, insufficient N substrate and low temperature became the primary limiting factors for N2O emission according to the results of the regression models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号