首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
芦殿军  李志慧  闫晨红  刘璐 《软件学报》2022,33(12):4804-4815
基于四量子比特Cluster态,提出一种可验证多方量子密钥协商方案.方案允许每次由两个参与者利用自己的子密钥分别在每个四量子比特Cluster态的两个粒子上执行X运算,并对转换后的Cluster态执行延迟测量,这保证了每个参与者对协商密钥的贡献相等.提出的方案使用相互无偏基粒子作为诱饵粒子,并且利用对称二元多项式的一对函数值对这些诱饵粒子执行酉运算,不仅可以进行窃听检验,而且还能进行参与者之间的身份验证.本方案适用于任意大于2的参与者人数.安全性分析表明,提出的方案能够抵抗外部攻击及参与者攻击.与现有的多方密钥协商方案相比,该方案不仅在诱饵粒子的使用上有优势,同时具有较高的量子比特效率.  相似文献   

2.
A new application of the four-qubit cluster state is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. Muralidharan and Panigrahi (Phys Rev A 78:062333, 2008) argued that a four-qubit cluster state is impossible for QIS of an arbitrary two-qubit state. In this paper, we demonstrate that two four-qubit cluster states can be used to realize the deterministic QIS of an arbitrary three-qubit state by performing only the Bell-state measurements. Our scheme considered here is secure against certain eavesdropping attacks.  相似文献   

3.
Based on four-qubit cluster states, we present a two-party quantum key agreement (QKA) scheme using unitary operations. In this scheme, two participants perform the unitary operation on the different photon of the same cluster state, which guarantees that each party contributes equally to the agreement key. By measuring each cluster state and decoding, these two participants can generate a four-bit classical key without the exchange of classical bits between them. Compared with other existed two-party QKA protocols, our scheme is efficient. Security analysis shows that our protocol is secure against both participant and outsider attack.  相似文献   

4.
We propose a way for analyzing the cluster states of four-qubit systems completely, resorting to the interaction between the photon and the electron spin in a quantum dot embedded inside a one-side optical microcavity. With parity-check quantum nondemolition detectors based on nonlinearity, single-qubit operations, single-photon detectors, and linear optical elements, the 16 orthogonal cluster states for four-qubit systems can be distinguished completely. We discuss not only the analysis for the cluster states of four-photon systems, but also for those of electron spin systems. Our calculation shows that the fidelity of the four-qubit cluster-state analysis is high when the side leakage rate of the microcavity is low.  相似文献   

5.
We demonstrate that a four-qubit cluster state can be used to realize the deterministic quantum state sharing (QSTS) of an arbitrary four-qubit GHZ-type state among three parties by introducing three ancillary qubits and performing three controlled-NOT operations. In our scheme, any one of the two agents has the ability to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information.  相似文献   

6.
The full analysis of quantum protocols requires the knowledge of the role of quantum states, bases of measurement and quantum gates involved. In what concerns the famous two-qubit quantum gate teleportation protocol, the role of the basis of measurement was considered in a recent work by Mendes and Ramos. In this work, we analyze the role of the four-qubit state used as resource. We show that the quantum two-qubit gate teleportation divides the set of pure four-qubit states in two classes. For one class, deterministic and probabilistic teleportation can be achieved, while for the other class, probabilistic remote two-qubit gate preparation is achieved.  相似文献   

7.
In this paper we propose two schemes for teleportation of a sub-class of tripartite states, the first one with the four-qubit cluster state and the second one with two Bell pairs as entanglement channels. A four-qubit joint measurement in the first case and two Bell measurements in the second are performed by the sender. Appropriate unitary operations on the qubits at the receiver’s end along with an ancilla qubit result in the perfect teleportation of the tripartite state. Analysis of the quantum circuits employed in these schemes reveal that in our technique the desired quantum tasks are achieved with lesser quantum cost, gate count and classical communication bits compared with other similar schemes.  相似文献   

8.
A new communication mode, quantum simultaneous secret distribution (QSSD) is put forward, where one sender distributes different classical secret message to multiparty receivers simultaneously. Based on the properties of the one-dimensional four-qubit cluster states, a three-party QSSD protocol is proposed, and then it is extended to the case that there are many receivers. Owing to the idea of quantum dense coding, each receiver can receive two bits of classical message by the sender only using a cluster state. In order to check security of quantum channels, a strategy which can prevent common attacks efficiently is put forward. QSSD is distinct from quantum secret sharing (QSS) and quantum broadcast communication (QBC), but it can be easily converted into QSS and QBC. QSSD is also different from the multiple-QKD communication mode where the sender shares a private key with each receiver at first, while in QSSD the sender doesn’t; in addition, only one round of one-to-many communication is performed in QSSD, while in multiple-QKD communication mode many rounds of one-to-one communication are performed.  相似文献   

9.
An efficient protocol for remotely preparing an arbitrary three-qubit state is devised with a four-qubit cluster state and an Einstein–Podolsky–Rosen state as the shared quantum resource. Using an appropriate set of eight-qubit mutually orthogonal measurement basis, the remote three-qubit preparation is successfully completed with the probability of ${\frac{1}{8}}$ in general case. Then to achieve our concerns of improving the probability of this protocol, some special ensembles of three-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to ${\frac{1}{4}}$ and ${\frac{1}{2}}$ , respectively, or even that the RSP protocol can be realized with unit success probability.  相似文献   

10.
采用4个EPR(Einstein-Podolsky-Rosen)对作为量子信道,提出一种新的全概率联合远程制备任意四粒子Cluster类态方案。在这个新的方案中,一个制备者执行四粒子投影测量,另一个制备者对手中的粒子执行二粒子投影测量。然后,接收者对手中二粒子进行某种幺正操作,并分别对两个辅助粒子进行受控非门操作,从而最终得到需要制备的Cluster类态。与其他制备任意四粒子Cluster类态的全概率制备方案相比,所提协议效率较高,而且在实验上更经济可行。  相似文献   

11.
From the perspective of quantum circuit, a construction framework and a measurement framework of a general kind of four-qubit states are sketched, respectively. By utilizing the properties of this kind of states, a quantum secure direct communication (QSDC) protocol is put forward, which adopts the idea of optimal quantum superdense coding to achieve a maximal efficiency and high resources capacity. The security of the proposed protocol is discussed in detail and it is proved to be secure theoretically. Moreover, the sufficient and necessary condition of which multipartite states are suitable for optimal quantum superdense coding in quantum secure direct communication is figured out.  相似文献   

12.
In this work we study the entanglement of pure four-qubit quantum states. The analysis is realized, firstly, through the comparison between two different entanglement measures: the Groverian entanglement measure and the residual entanglement calculated with negativities. After, we use the last to measure the entanglement of several four-qubit states and the variation of the entanglement when the four-qubit state is processed by a two-qubit gate.  相似文献   

13.
Our main result is a monogamy inequality satisfied by the entanglement of a focus qubit (one-tangle) in a four-qubit pure state and entanglement of subsystems. Analytical relations between three-tangles of three-qubit marginal states, two-tangles of two-qubit marginal states and unitary invariants of four-qubit pure state are used to obtain the inequality. The contribution of three-tangle to one-tangle is found to be half of that suggested by a simple extension of entanglement monogamy relation for three qubits. On the other hand, an additional contribution due to a two-qubit invariant which is a function of three-way correlations is found. We also show that four-qubit monogamy inequality conjecture of Regula et al. (Phys Rev Lett 113:110501, 2014), in which three-tangles are raised to the power \(\frac{3}{2}\), does not estimate the residual correlations, correctly, for certain subsets of four-qubit states. A lower bound on residual four-qubit correlations is obtained.  相似文献   

14.
In the present paper, a novel bidirectional quantum teleportation protocol is proposed. By using entanglement swapping technique, two GHZ states are shared as a quantum channel between Alice and Bob as legitimate users. In this scheme, based on controlled-not operation, single-qubit measurement, and appropriate unitary operations, two users can simultaneously transmit a pure EPR state to each other, While, in the previous protocols, the users can just teleport a single-qubit state to each other via more than four-qubit state. Therefore, the proposed scheme is economical compared with previous protocols.  相似文献   

15.
In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice’s measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.  相似文献   

16.
We analyse robustness of nonlocal correlation in multiqubit entangled states—three- and four-qubit GHZ class and three-qubit W class—useful for quantum information and computation, under noisy conditions and weak measurements. For this, we use a Bell-type inequality whose violation is considered as a signature for confirming the presence of genuine nonlocal correlations between the qubits. In order to demonstrate the effects of noise and weak measurements, an analytical relation is established between the maximum expectation value of three and four-qubit Svetlichny operators for the systems under study, noise parameter and strengths of weak measurements. Our results show that for a set of three- and four-qubit GHZ class states, maximal nonlocality does not coincide with maximum entanglement for a given noise parameter and a certain range of weak measurement parameter. Our analysis further shows an excellent agreement between the analytical and numerical results.  相似文献   

17.
针对LEACH协议生成非均匀的簇造成能量损耗的问题,以降低能量损耗为研究目的,结合PEGASIS协议的特点,从选择簇首节点、形成簇、簇间路由等方面对LEACH协议进行了改进.经过理论分析和仿真实验,对该协议的性能进行测试,并使用对比的方法,与LEACH协议进行比较.仿真实验结果表明,该路由协议的设计使各节点较均衡地消耗能量,节点生存时间更长,延长了整个无线传感器网络的生命周期.  相似文献   

18.
针对无线传感器网络中利用分簇技术,簇首到Sink节点通信采用多跳路由方式容易引起"能量空洞"的问题,提出了基于最小生成树的非均匀分簇路由协议.该协议在簇首选举阶段,以节点剩余能量、节点度、节点能量消耗速度为权重计算簇首竞争等待时间,选用簇首竞争等待时间小的节点为簇首,以均衡能量;簇形成后,以剩余能量、簇间的距离和能量消耗为参数构建基于最小生成树的最优传输路径通过多跳方式将数据发送到Sink节点.仿真结果表明,该路由协议能有效均衡能耗,延长网络生命周期,延缓"能量空洞"的形成.  相似文献   

19.
提出一种基于虚拟栅格的分簇路由协议.在本协议中汇聚节点动态、随机地建立虚拟栅格,同时形成簇结构;并依据剩余能量以及簇的整体能量消耗选择簇头.本协议不但减少了控制信息和冗余信息,而且均衡了传感器节点的能量消耗.仿真的结果表明本协议是能量有效、可扩展的无线传感器路由协议.  相似文献   

20.
减少能量消耗,延长网络生存时间,是无线传感器网络中路由协议要考虑的重要问题;在对LEACH协议和定向扩散协议进行分析的基础上,针对这两种协议中存在的问题,提出一种基于簇首定向扩散(CHDD)的路由协议;该协议改进了簇首选择算法,在簇首与sink节点之间采用定向扩散算法,该协议可以有效地延长整个网络的生存时间,仿真结果证明该协议的性能改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号