共查询到20条相似文献,搜索用时 15 毫秒
1.
L. W. TSAY M. C. YOUNG C.-S. SHIN S. L. I. CHAN 《Fatigue & Fracture of Engineering Materials & Structures》2007,30(12):1228-1236
Tensile and fatigue crack growth tests of 2205 duplex stainless steel (DSS) were performed in laboratory air, gaseous hydrogen at 0.2 MPa and saturated H2S solution. The longitudinal specimen showed a lesser degradation of tensile properties than the transverse ones in saturated H2S solution. The orientation of specimens with respect to rolling direction had little influence on the fatigue crack growth rate (FCGR) of the alloy in air. Furthermore, 2205 duplex stainless steel was susceptible to hydrogen‐enhanced fatigue crack growth. Transmission electron micrographs, in addition to X‐ray diffraction, revealed that the strain‐induced austenite to martensite transformation occurred near the crack surface within a rather narrow depth. Fatigue fractography of the specimens tested in air showed mainly transgranular fatigue fracture with a small amount of flat facet fracture. Furthermore, extensive quasi‐cleavage fracture of 2205 duplex stainless steel was associated with the hydrogen‐enhanced crack growth. 相似文献
2.
Considering that many applications of Lean Duplex Stainless Steels (LDSSs) involve cyclic loading, the aim of this paper is to study short crack initiation and growth during low (LCF) and high cycle fatigue (HCF) in AL 2003 (UNS S32003). Electron Backscattered Diffraction (EBSD) analysis of plastically active grains allows to determinate the slip systems and their associated Schmid factor (SF). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Whereas in HCF cracks nucleate at grains boundaries, during LCF cracks nucleate along intrusion/extrusions in ferritic grains and as they reach austenitic grains grow along active slip systems or by double slip system. Moreover, phase boundaries and grain boundaries act as effective barrier against crack propagation. 相似文献
3.
M. H. Kelestemur & T. K. Chaki 《Fatigue & Fracture of Engineering Materials & Structures》2001,24(1):15-22
Fatigue crack growth (FCG) behaviour and its characteristics following tensile overloads were investigated for AISI 304 stainless steel in three different atmospheres; namely dry argon, moist air and hydrogen. The FCG tests were performed by MTS 810 servohydraulic machine. CT specimens were used for the tests and crack closure measurements were made using an extensometer. FCG rates of 304 stainless steel at both dry argon and moist air atmospheres have shown almost the same behaviour. In other words, the effect of moisture on FCG of this material is very small. However, in a hydrogen atmosphere, the material showed considerably higher crack growth rate in all regimes. In general, for all environments, the initial effect of overloads was to accelerate the FCG rate for a short distance (less than a mm) after which retardation occurred for a considerable amount of time. The main causes for retardation were found as crack blunting and a long reinitiation period for the fatigue crack. Regarding the environmental effect, the overload retardation was lowest in a hydrogen atmosphere. This low degree of retardation was explained by a hydrogen embrittlement mechanism. In a general sense, hydrogen may cause a different crack closure mechanism and hydrogen induced crack closure has come in to the picture. Scanning electron microscope and light microscope examinations agreed well with the above results. 相似文献
4.
The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular–dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path. 相似文献
5.
The kinetics of short crack growth has been studied in austenitic‐ferritic 2205 duplex stainless steel. Smooth cylindrical specimens and specimens with shallow notch were subjected to constant plastic strain amplitude loading. The crack growth was studied in notched specimens. The notch area has been mechanically and electrolytically polished to facilitate the observation of crack initiation and growth. The initiated cracks were observed in an SEM (scanning electron microscope). The crack growth was studied using long distance QUESTAR optical microscope equipped with high‐resolution camera. In constant plastic strain amplitude loading the microcracks were initiated and their growth kinetics has been studied. The characteristic features of the crack growth at different plastic strain amplitudes were recorded. Two approaches to analyse the crack growth rates were adopted. The comparison of the prediction of the fatigue life using the plastic‐strain‐dependent crack growth rate was compared with Manson–Coffin law and the relation between parameters of this law and parameters of the short crack growth law were established. 相似文献
6.
An important structural component of the Westinghouse Large Coil Programme superconducting magnet is the JBK-75 (modified A-286) stainless steel conductor sheath. Because the presence of pre-existing cracks or flaws in the conductor sheath is a potential possibility, the structural reliability of the conductor sheath would be enhanced if a threshold level of stress intensity range (ΔKth) was established below which fatigue crack growth would not occur. Consequently, near-threshold fatigue growth rate data were generated at two load ratios on JBK-75 stainless steel at room and cryogenic temperatures. No load ratio effect on near-threshold fatigue crack growth rate was observed at cryogenic temperatures. 相似文献
7.
A. K. LAKSHMINARAYANAN K. SHANMUGAM V. BALASUBRAMANIAN 《Fatigue & Fracture of Engineering Materials & Structures》2009,32(8):656-664
The present investigation aims to study the effect of welding processes such as shielded metal arc welding (SMAW), gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) on fatigue crack growth behaviour of the ferritic stainless steel (FSS) conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material and AISI 2209 grade duplex stainless steel (DSS) was used as filler metal, for preparing single pass butt welded joints. Centre cracked tensile (CCT) specimens were used to evaluate the fatigue crack growth behaviour. From this investigation, it is found that the GTAW joints showed superior fatigue crack growth resistance compared with SMAW and GMAW joints. The reasons for the superior performance were discussed in detail. 相似文献
8.
M. Balbi M. Avalos A. El Bartali I. Alvarez-Armas 《International Journal of Fatigue》2009,31(11-12):2006
The kinetics of microcrack growth during cycling has been studied in a S32205 duplex stainless steel in the as-received and aged (100 h at 475 °C) conditions. Cylindrical specimens with a shallow notch were subjected to a constant plastic strain range of 0.3% in both thermal conditions. The characteristic features of surface damage and crack growth showed striking differences in microcrack density, nucleation location and propagation rate between the two thermal conditions even though the fatigue lives are comparable. In the as-received material, microcrack density is low and they nucleate mainly at grain and phase boundaries or second-phase particles. In the aged condition, slip markings first appear in the ferritic phase and they are the preferred site for microcrack nucleation. Crack propagation takes place along slip markings in adjacent grains for crack lengths less than 100 μm. A comparison between fatigue life and the relevant parameters of a microcrack growth law was made. 相似文献
9.
The passive behavior of 2205 duplex stainless steel (DSS) and its individual phases (α-phase, γ-phase) in neutral 3.5% NaCl solution was investigated by various electrochemical methods. The results indicated that galvanic effect between α and γ phases cannot deteriorate local corrosion, but favors the enhancement of the passive film. Under the galvanic effect, the diffusion of the dissolved passive cations would be promoted in a short distance between α and γ zones, leading to modifications of the chemical composition and semiconductive property of the passive film and therefore the enhancement of the corrosion resistance of DSS 2205. 相似文献
10.
C. Rubio-González C. Felix-MartinezG. Gomez-Rosas J.L. OcañaM. Morales J.A. Porro 《Materials Science and Engineering: A》2011,528(3):914-919
Duplex stainless steels have wide application in different fields like the ship, petrochemical and chemical industries that is due to their high strength and excellent toughness properties as well as their high corrosion resistance. In this work an investigation is performed to evaluate the effect of laser shock processing on some mechanical properties of 2205 duplex stainless steel. Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field which increases fatigue crack initiation life and reduces fatigue crack growth rate. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switched Nd:YAG laser, operating at 10 Hz with infrared (1064 nm) radiation. The pulses are focused to a diameter of 1.5 mm. Effect of pulse density in the residual stress field is evaluated. Residual stress distribution as a function of depth is determined by the contour method. It is observed that the higher the pulse density the greater the compressive residual stress. Pulse densities of 900, 1600 and 2500 pul/cm2 are used. Pre-cracked compact tension specimens were subjected to LSP process and then tested under cyclic loading with R = 0.1. Fatigue crack growth rate is determined and the effect of LSP process parameters is evaluated. In addition fracture toughness is determined in specimens with and without LSP treatment. It is observed that LSP reduces fatigue crack growth and increases fracture toughness if this steel. 相似文献
11.
In this paper R-ratio effects on fatigue crack growth near threshold region of a metastable austenitic stainless steel (MASS) in two different conditions, i.e. annealed and cold rolled, is investigated. The authors present two approaches to correlate FCGR data for R = 0.1, 0.3, 0.5, 0.7 and Kmax = 23 MPa√m using a two-parameters approach (ΔK, Kmax and α in Kujawski’s model) and crack closure model (using Elber’s Kop and in Donald’s ACRn2 approaches). The Kop and ACRn2 were experimentally measured on a single edge tension specimens. The Kop measurements were performed using a modified method and based on ASTM standards. While the two driving force approaches correlate data well in the Paris region, they fail to correlate them in the threshold region. However, this correlation can be improved in the threshold region when a different α value from the Paris region is used. The authors indicated that two different mechanisms operate; one in the Paris region and another in the near threshold. Hence, they proposed to combine the two-parameter and crack closure approaches where ΔK is replaced by ΔKeff (estimated by a new method proposed in this paper), which is shown to correlate the FCGR data for different stress ratios for annealed steel. The correlation for cold rolled condition shows improvement with the new approach but is not as good as for the annealed one. The author further suggests to modify Kmax in the two-parameter approach. 相似文献
12.
Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases 总被引:1,自引:0,他引:1
H. Farnoush A. Momeni K. Dehghani J. Aghazadeh Mohandesi H. Keshmiri 《Materials & Design》2010,31(1):220-226
High temperature behavior of 2205 duplex stainless steel was studied by considering behavior of each constituent phase. The specimens were subjected to hot compression tests at temperatures of 800–1100 °C and strain rates ranging from 0.001 to 1 s−1 at intervals of an order of magnitude. The flow stress analysis showed that hot working empirical constants are different at low and high temperatures. The strain rate sensitivity m was determined and found to change from 0.12 to 0.21 for a temperature rise from 800 °C to 1100 °C. The apparent activation energy Q was calculated as 554 and 310 kJ/mol for low and high temperature, respectively. The validity of constitutive equation of hyperbolic sine function was studied and stress exponent, n, was assessed to be 4.2. Assuming the hyperbolic sine function for determination of strain rate and application of the rule of mixture, the interaction coefficients of δ-ferrite, P, and austenite, R, were estimated at different hot working regimes. It was found that the interaction coefficients are functions of Zener–Hollomon parameter Z and obey the formulas P = 1.4Z−0.08 and R = 0.76Z0.005. Therefore, it was concluded that at low Z values δ-ferrite almost accommodates strain and dynamic recovery is the prominent restoration process which may even inhibit dynamic recrystallization in austenite. Otherwise, at high Z, austenite controls the deformation mechanism of material and dynamic recrystallization leads in finer microstructure. 相似文献
13.
In this study, static strain ageing behavior of commercially available and solution heat treated duplex stainless steel was investigated and the effect of static strain ageing on the mechanical properties was also determined in detail. Some of as-received duplex stainless steel test specimens were pre-strained in tension by 5% and then aged at 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C for 30 min in furnace. Some of duplex stainless steel test specimens were solution heat treated at 1050 °C for 30 min, water quenched and then pre-strained for 5% in tension shortly after the solution heat treatment.In order to identify the effect of static strain ageing on the mechanical properties, the tensile strength, the change in the strength due to ageing (ΔY), elongation fracture and hardness were determined. The test results showed that the mechanical properties were affected by static strain ageing mechanism which was applied at different temperatures for same time interval. 相似文献
14.
The effect of duplex stainless steel microstructure on its cavitation morphology in seawater 总被引:1,自引:0,他引:1
An ultrasonically induced cavitation facility was used to study the effect of a cast duplex stainless steel (DSS) microstructure on its corrosion behavior in seawater. Under cavitation conditions, small cavities initiated in the ferritic matrix and at the ferrite–austenite boundaries. With the progress of cavitation, the attack concentrated in the austenitic phase and then spread to the ferritic phase and was associated with cleavage-like facets, ductile tearing, river patterns and crystallographic steps at later stages. Cross-sections of specimens revealed microcracks initiating from the ferritic matrix at the bottom of cavities. Crack propagation into the matrix was impeded by the austenitic islands. 相似文献
15.
Mohandas Srinivas & Kutumbarao 《Fatigue & Fracture of Engineering Materials & Structures》2000,23(1):33-38
The effects of a post-weld heat treatment on the fracture toughness and fatigue crack growth behaviour of electron beam welds of an α + β titanium alloy, Ti–6.5Al–1.9Zr–0.25Si have been studied. Welds in the stress-relieved condition exhibited poor fracture toughness due to poor energy absorbing capacity of the thin α and α' phases. Post-weld heat treatment which resulted in the decomposition of α' to α + β and the coarsening of intragranular and intergranular α resulted in improved toughness. This improvement in the toughness is related to improved ductility leading to crack blunting, crack path deviation at the thick intragranular and intergranular α phase. Fatigue crack growth resistance of welds was superior to the base metal in the α + β heat-treated condition. The superior crack growth resistance of the welds is due to the acicular α microstructure which results in a tortuous crack path and possible crack closure arising from crack path tortuosity. 相似文献
16.
The crack growth behavior of AL6XN stainless steel was experimentally investigated using round compact tension (CT) specimens. The influences of the R-ratio (the ratio of the minimum load over the maximum applied load in a cycle), the tensile and compressive overloads, and the loading sequence on crack growth were studied in detail. The results from the constant-amplitude experiments show a sensitivity of the crack growth rate to the R-ratio. The application of a tensile overload has a profound effect on crack growth, resulting in a significant retardation in the crack propagation rate. A compressive overload (underload) leads to a short-lived acceleration in crack growth. Results from the two-step high-low loading reveal a period of crack growth retardation at the beginning of the lower amplitude step, an effect similar to that of a single overload. A crack driving force parameter together with a modified Wheeler model is found to correlate the crack growth experiments well. 相似文献
17.
The martensitic stainless steels are widely used in many industries with their excellent mechanical properties and sufficient corrosion resistance. These steels usually are used for a wide range of applications like nuclear power plants, steam generators, mixer blades, pressure vessels, turbine blades, surgical tools, instrument manufacturing and so on. Contrary to good mechanical and corrosion properties of martensitic steels, poor weldability and cold cracking sensitivity are major problems that are faced in joining of these steels. In this study, the weldability of AISI 420 (X30Cr13) martensitic stainless steel by CO2 laser beam welding method has been investigated. Effects of pre and post weld heat treatments on mechanical properties and microstructure of laser welded AISI 420 martensitic stainless have also been determined. As a conclusion, it was determined that pre and post weld heat treatments sufficiently improved the mechanical properties of the welds. 相似文献
18.
The effects of post weld heat treatment (PWHT) and oil quenching on the metallurgical and mechanical properties of the duplex (UNS S31803) welded joints were evaluated at three different temperatures namely 1080, 1150 and 1200 °C. The microstructural variation, austenite/ferrite phase changes, grain size measurements and microhardness aspects of the welded joint were observed. The fraction of ferrite and austenite phases was equivalent at 1150 °C. Nickel element was more efficient in controlling the twin phase balance. Finer grain structure was achieved at 1150 °C due to recrystallization effect. Twin phase presence and absence of precipitates were confirmed through XRD and TEM which followed Kurdjumov–Sachs relationship. At a heating pressure of 40 MPa, heating time of 4 s, an upsetting pressure of 80 MPa, and an upsetting time of 2 s during a PWHT at 1150 °C, a 50/50 balance between the duplex phases, fine grains, and increased microhardness were obtained. 相似文献
19.
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K1.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied. 相似文献
20.
The creep crack growth behaviour of type 316stainless steel and its weldment in the temperature range 600° to BOOoe has been studied under plane stress conditions. The creep crack growth (eeG) rate bears a relation with sheloa;d point deflection (LPD) rate independent of the load. The parameters stress mtenstty factor, K,and the energy rate line integral C*,have been correlated with the e.eG rate. At 6000e tsecrack growth takes place along the interface between austemte and thsdelta fernte: At 700° and BOOoe sigma phase formation is dominant and crack growth tS along the Stgma phase and austenite. 相似文献