首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ziad Bou-Saleh 《Thin solid films》2007,515(11):4727-4737
The paper discusses the results on the use of a simple cyclic linear potentiodynamic polarization technique as a method of improving corrosion properties of passive oxide films formed on a biomedical-grade 316LVM stainless steel surface in phosphate buffer. The results demonstrate that the modification of 316LVM surface by cyclic potentiodynamic polarization between the potential of hydrogen and oxygen evolution results in the formation of a passive film that offers significantly increased corrosion resistance (both pitting and general) when compared to the naturally grown passive film. The effect of number of cycles and anodic potential limit on the resulting corrosion properties is discussed. The capacitance analysis demonstrates that the major difference between the electrochemically formed and naturally grown passive film is in the type of semiconductivity in the potential region where pitting on the unmodified surface occurs. The XPS analysis shows that this is due to the presence of Cr(VI)-species in the electrochemically formed passive film, which contribute to the increased density of metal vacancies, and thus to the increased pitting corrosion resistance of the passive film.  相似文献   

2.
The results discussed in the paper demonstrate that a significant improvement in pitting corrosion resistance of a biomedical grade 316LVM stainless steel can be achieved by electrochemically forming highly-protective passive oxide films on the material's surface, under cyclic potentiodynamic polarization conditions. The film formed in a sodium nitrate electrolyte is completely resistant to pitting corrosion in simulating physiological solutions even at high temperatures (60 °C), and after sterilization. The high pitting resistance of the electrochemically-formed films was explained on the basis of their semiconducting properties. Namely, the enrichment of the outer part of the electrochemically formed passive film with Cr(VI)-species results in a decrease in the density of oxygen vacancies, which act as pitting initiation sites, and their ‘replacement’ by metal vacancies formed by the electrochemical oxidation of Cr(III) to Cr(VI). In this configuration, the outer Cr(VI)-rich oxide layer behaves as cation selective, which results in the increased pitting corrosion resistance of the film. The simple electrochemical passivation technique discussed in the paper can be efficiently used to form highly pitting resistant passive films on 316LVM-built medical implant devices of any geometry.  相似文献   

3.
316L不锈钢表面纳米化后腐蚀性能研究   总被引:8,自引:0,他引:8  
对表面纳米化和未经表面纳米化处理的316L不锈钢的样品分别进行点蚀实验和应力腐蚀对比实验,在3.5%(质量分数)NaCl水溶液中分别测出它们的极化曲线.结果表明,316L不锈钢表面纳米化后抗点蚀性能下降,抗应力腐蚀性能提高.对应力腐蚀断口的SEM 分析发现,316L不锈钢应力腐蚀断口有明显分区现象,断裂形式为韧性断裂,开裂通道既有穿晶型也有沿晶型.  相似文献   

4.
The effects of surface passivation and electropolishing on the mechanical performance of a group of biomedical grade stainless steels have been investigated. Surface roughness measurements showed that the treatments had a significant effect on the final surface finish. However, static mechanical testing demonstrated no difference in static mechanical properties, regardless of surface treatment. High cycle fatigue testing was carried out at a frequency of 120 Hz with a load ratio of R = 0.1, in both air and a simulated in vivo wet corrosive environment. 316LVM (cold worked) proved superior to 316L (annealed) in fatigue performance, in both dry and wet environments. The fatigue performance of both materials did depend on the surface treatment, with electropolishing resulting in better performance than passivation. The fatigue performance of both materials was significantly better in the dry environment in comparison to the wet environment. The dry-to-wet deterioration in fatigue performance was somewhat dependent on the surface treatment for the 316L material but almost independent of surface treatment for the 316LVM material. Significant surface pitting and damage was evident for 316L during fatigue in the wet environment, whereas almost no pitting and damage was observed for 316LVM.  相似文献   

5.
采用化学浸泡腐蚀试验及微观组织和化学成分分析研究了5种铸造双相不锈钢在6%Fe Cl3溶液中的点腐蚀行为,并与316L奥氏体不锈钢进行了对比。结果表明,铸造双相不锈钢的抗点腐蚀性能均优于316L的,腐蚀速率和点腐蚀深度均小于316L奥氏体不锈钢的;双相不锈钢主要耐点蚀能力合金元素在奥氏体和铁素体相内分布不均匀,铬、钼更多地分配于铁素体相内,而镍、氮则更多地分配于奥氏体相内,铁素体相的耐点蚀指数PRE(Cr%+3.3Mo%+16N%)大于奥氏体相;双相不锈钢的耐点腐蚀性能与化学成分有关,随着PRE的增加,双相不锈钢的耐点腐蚀性能提高,铜元素在铁素体内析出的富铜相导致点蚀优先在铁素体内发生和发展。  相似文献   

6.
采用电化学测量、交流阻抗技术、扫描电镜观察和能谱分析等实验方法,研究了316L不锈钢在铁氧化菌(IOB)溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统微生物腐蚀的特征及机制,结果表明,在含有IOB溶液中的自腐蚀电位(Ecorr)、点蚀电位(Epit)和极化电阻(Rp)均随浸泡时间的增加呈现出降-升-降的变化趋势;在含有IOB溶液中的腐蚀速率均大于在无菌溶液中;IOB的生长代谢活动及其生物膜的完整性和致密性影响了316L不锈钢表面的腐蚀过程,使不锈钢表面的钝化膜层腐蚀破坏程度增加,加速了316L不锈钢的点蚀.  相似文献   

7.
The effects of 5-(3-aminophenyl)-tetrazole (APT) on the inhibition of unalloyed iron corrosion in aerated 3.5% NaCl solutions as a corrosion inhibitor have been studied using open circuit potential (OCP), cyclic potentiodynamic polarization (CPP), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements. The inhibited iron surface was characterized by scanning electron spectroscopy (SEM) and energy dispersive X-ray (EDS) investigations. The OCP showed positive shifts of potential in the presence of APT and the increase of its concentration. CPP and CA measurements indicated that APT molecules decrease the pitting and uniform corrosions through decreasing the pitting and absolute currents, and corrosion rate as well as shifting the corrosion and pitting potentials of iron towards the noble values. EIS plots revealed that APT increases the surface and polarization resistances of iron. SEM/EDS investigations proved that the inhibition of iron corrosion in NaCl containing APT solutions is achieved by the adsorption of APT molecules onto iron to preclude the dissolution process by blocking the active sites on its surface.  相似文献   

8.
目前产于高氮不锈钢的研究多集中于理论基础、制造工艺和力学性能等方面,有关耐蚀性方面的研究有限。通过循环极化、Mott-Schottky曲线以及电化学阻抗(EIS)等方法,研究了Cr23Mo1N奥氏体不锈钢(高氮钢,HNSS)和316L不锈钢在Cl-溶液中的耐点蚀性能。结果表明:与316L不锈钢相比,高氮钢具有更正的自腐蚀电位,更小的维钝电流密度。阻抗谱表明高氮钢的钝化膜比316L更加稳定,且电荷转移电阻更大。Mott-Schottky曲线表明高氮钢的点缺陷施主浓度比316L不锈钢低一个数量级,钝化膜的绝缘性更好。循环极化曲线表明高氮钢的点蚀敏感性更小,钝化膜的自修复能力更强,耐蚀性能更加优越。  相似文献   

9.
In this study, the influence of surface roughness on the passivation and pitting corrosion behaviour of AZ91 magnesium alloy in chloride-containing environment was examined using electrochemical techniques. Potentiodynamic polarisation and electrochemical impedance spectroscopy tests suggested that the passivation behaviour of the alloy was affected by increasing the surface roughness. Consequently, the corrosion current and the pitting tendency of the alloy also increased with increase in the surface roughness. Scanning electron micrographs of 24 h immersion test samples clearly revealed pitting corrosion in the highest surface roughness (Sa 430) alloy, whereas in the lowest surface roughness (Sa 80) alloy no evidence of pitting corrosion was observed. Interestingly, when the passivity of the alloy was disturbed by galvanostatically holding the sample at anodic current for 1 h, the alloy underwent high pitting corrosion irrespective of their surface roughness. Thus the study suggests that the surface roughness plays a critical role in the passivation behaviour of the alloy and hence the pitting tendency.  相似文献   

10.
铝合金在使用过程中极易引发基体腐蚀现象,如点蚀、晶间腐蚀等,为保障铝合金在腐蚀环境中的应用,可通过建立超疏水表面改变铝合金表面的润湿性,从而在一定程度上减少腐蚀液与铝合金表面的接触,进而改善耐蚀性。本文通过酸刻蚀和沸水刻蚀两种方法在铝合金表面构筑微纳米结构,并使用低表面能物质硬脂酸进行表面处理得到超疏水表面。采用扫描电子显微镜、接触角测试仪、原子力显微镜分别对铝合金表面形貌、疏水性和粗糙度进行测试,得到两种方法的最佳制备时间,而后通过极化曲线对两种方法制备的铝合金表面耐蚀性能进行对比,进而研究两种刻蚀方法对铝合金耐蚀性的影响。实验结果表明:酸刻蚀时间为15 s时,铝合金表面接触角达到峰值163.9°,呈现超疏水状态,相对于空白样品,表面粗糙度增加了24倍,电化学自腐蚀电位正向移动0.362 8 V;沸水刻蚀时间为1 min时,其表面接触角达到峰值109.6°,比空白样品疏水性强但未呈现超疏水状态,相对于空白样品,经沸水刻蚀的铝合金表面粗糙度增加了4.4倍,电化学自腐蚀电位正向移动0.074 8 V。两种方法处理得到的铝合金表面的耐蚀性与空白铝合金试样相比均有显著提高,而酸刻蚀法的缓蚀效...  相似文献   

11.
随着20/316L双金属管在油气生产中的推广应用,关于内衬316L不锈钢的腐蚀失效问题日益突出,尤其是条件苛刻的酸性集输环境下,目前相关研究不多.利用扫描电镜(SEM)、能谱仪(EDS)等测试手段对20/316L双金属管在含H2S-Cl-的酸性集输环境中出现的腐蚀失效问题进行了系统分析,探讨了腐蚀失效的原因.结果表明:20/316L双金属管腐蚀类型为局部腐蚀,主要分布于内衬管316L的底部.腐蚀失效的主要原因是腐蚀介质中存在高浓度的H2S与Cl-,共同促进了钝化膜的破裂与点蚀的发展.当存在较高浓度的H2S与Cl-时,钝化膜薄弱处与电位较低的非金属夹杂物处易发生钝化膜的破裂与金属基体的快速溶解而成为点蚀源,形成点蚀.  相似文献   

12.
The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniques. Cu addition decreased the general corrosion resistance, resulting in a higher general corrosion rate in the sterile medium. Because DSS usually has a very small general corrosion rate, its pitting corrosion resistance is far more important. In this work, it was shown that 2205-3%Cu DSS exhibited a much higher pitting corrosion resistance against the P. aeruginosa biofilm compared with the 2205 DSS control, characterized by no significant change in the pitting potential and critical pitting temperature(CPT) values. The strong pitting resistance ability of 2205-3%Cu DSS could be attributed to the copper-rich phases on the surface and the release of copper ions, providing a strong antibacterial ability that inhibited the attachment and growth of the corrosive P. aeruginosa biofilm.  相似文献   

13.
用中频感应炉熔炼了新型超低碳高合金奥氏体不锈钢MHB4和316L不锈钢,研究了它们在不同介质中的抗腐蚀性能。结果表明,由于MHB4增加了Cr、Ni、Mo的含量,并加入W,极大地提高了抵抗Cl^-离子引起的点蚀能力,因此MHB4的耐点蚀、耐缝隙腐蚀以及在合成海水中的抗蚀性均优于316L不锈钢。  相似文献   

14.
目前,针对904L,254s Mo和2507等几种主要备选超级不锈钢在烟气脱硫环境中的耐点蚀性能缺乏系统研究。在温度分别为20、40、70℃的死亡绿液溶液中,利用循环伏安曲线和扫描电镜(SEM)法,对316不锈钢和超级不锈钢904L、254s Mo及2507的极化行为和点蚀形貌进行了研究。结果表明:在该环境中,升高温度可降低4种不锈钢表面钝化膜稳定性并提高其点蚀敏感性;在不同温度环境下,316不锈钢均有严重的点蚀现象发生,而254s Mo和2507不锈钢表面均无明显点蚀迹象;在20℃时,904L不锈钢表面无明显点蚀迹象,40℃时,其表面出现典型的点蚀形貌,但点蚀坑尺寸较小,在70℃的高温下,其点蚀坑尺寸明显增大,点蚀损伤严重;254s Mo和2507均适合作烟气脱硫设备材料,而316、904L在该环境中需谨慎使用。  相似文献   

15.
连漪  范洪远  王均  王琳琳 《材料导报》2016,30(22):91-94, 108
在不同表面粗糙度的L245钢表面获得Ni-Sn-P化学镀层。采用光学显微镜观察镀层的表面形貌;根据极化曲线、交流阻抗谱及浸泡腐蚀试验分析镀层耐蚀性。结果表明,较粗糙基体表面上的Ni-Sn-P镀层胞状物沿沟槽生长为条块状,当基体表面粗糙度Ra=0.147μm时,镀层的自腐蚀电流密度小,腐蚀速率相对较低;当基体表面粗糙度下降到Ra=0.053μm时,镀层致密性下降,耐蚀性最差。其原因是随着基体表面粗糙度的降低,镀层表面生长的条块状组织相互接合增多,产生孔隙的可能性增大。  相似文献   

16.
The corrosion behavior of 316L stainless steel (31 6L SS) has been investigated in solutions containing various concentrations of chloride ions by using potentiodynamic polarization, capacitance measurement and Mott- Schottky relationship analysis (M-S). The result indicates that passive currents change slightly with the addition of chloride ions. The pitting potential (Epit) decreases linearly with Iog[CI-]. Correspondingly, the point defect diffusion coefficient (Do) of the passive film increases linearly with increasing Iog[CI-]. The results also indicate that the pitting corrosion of 316L SS follows the adsorption mechanism in NaCI solution.  相似文献   

17.
The influence of calcium phosphate and serum on the corrosion resistance of AISI 316L stainless steel in 0.9% NaCl solution was investigated. Both substances are responsible for an increase in the pitting corrosion resistance. Calcium phosphate accelerates the rate of film formation, enhances the release of iron and nickel, and retards that of chromium from a corroding surface. Proteins induce the incorporation of phosphorus and calcium in corrosion products. These effects appear to replicate the accumulation of the same elements observed on stainless steels corrodedin vivo.  相似文献   

18.
城市污水作冷却水时影响316L不锈钢耐蚀性的因素   总被引:1,自引:0,他引:1  
用电化学方法研究了水质中的Cl-、NH4 -N、化学需氧量(COD)和pH值对316L不锈钢耐蚀性的影响.试验表明:在测试水质条件下,Cl-浓度达到300 mg/L时316L不锈钢点蚀电位有明显的下降;NH4 -N浓度的增加使点蚀电位显著降低;COD的增大使钝化电流有所增大;pH值增大到9时使316L不锈钢钝化电流有明显的增加.  相似文献   

19.
The pitting corrosion, crevice corrosion and accelerated leaching of iron, chromium and nickel of super-ferritic and duplex stainless steels, and for effective comparison the presently used 316L stainless steel, have been studied in an artificial physiological solution (Hank's solution) by the potentiodynamic anodic polarization method. The results of the above studies have shown the new super-ferritic stainless steel to be immune to pitting and crevice corrosion attack. The pitting and crevice corrosion resistances of duplex stainless steel were found to be superior to those of the commonly used type 316L stainless steel implant materials. The accelerated leaching study conducted for the above alloys showed very little tendency for the leaching of metal ions when compared with 316L stainless steel. Thus the present study indicated that super-ferritic and duplex stainless steels can be adopted as implant materials due to their higher pitting and crevice corrosion resistance.  相似文献   

20.
Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号