首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Physical principles and algorithms for reconstructing images of the inner structure of an object made of a solid material are considered. These are based on the pulsed echo method of ultrasonic testing using multielement antenna arrays focused on each point of the visualized region of the object by spatiotemporal processing of signals from a combination sounding of the object by all possible pairs of the antenna array. Substantial improvement of the image during testing of a plane-parallel object is obtained by using signals that are multiply reflected from the object boundaries; the use of different algorithms of image reconstruction is expedient for different types of discontinuity flaws.  相似文献   

2.
Russian Journal of Nondestructive Testing - To ensure the high speed of composing synthesized images with matrix antenna arrays, industrial ultrasonic-tomography systems require computationally...  相似文献   

3.
The features of algorithms for identifying the configurations of reflecting objects (points, spheres, planes, cylinders, etc.) in ultrasonic tomography of complexly structured concrete products are considered. The results of a practical solution to the problem of recognizing a pattern and determining the coordinates of a flat reflector using ultrasonic phased antenna arrays are presented for the example of applying the algorithm of focusing to a plane.  相似文献   

4.
The application of antenna arrays (AAs) for obtaining flaw images during automated non-destructive testing is considered. The conventional technique of using an AA as a phased AA has a number of drawbacks. An alternative approach is proposed in which echo signals are registered using an AA operating in the double scanning mode, and a modified algorithm of the combined SAFT, which takes into account multiray ultrasound propagation with consideration of transformations of wave types upon reflections from irregular boundaries of a test object, is used to obtain flaw images. The results of testing a specimen with a model of a volumetric flaw in the form of a 2-mm-diameter side hole drilled at a depth of 12 mm and a specimen with a crack model with a tip at a 12-mm depth are presented. Both specimens have rough bottoms. The obtained images allow determination of not only the dimensions and locations of flaws, but also their type.  相似文献   

5.
The well-known method of focusing ultrasonic signals to a point implemented using phased antenna arrays is considered as applied to problems of tomography of products manufactured from complexly structured materials. The features of applying broadband ultrasonic complexly modulated signals in phased antenna arrays and the limits of applicability of this method in constructing an image of a reflecting surface are discussed.  相似文献   

6.
聚乙烯管连接中大量使用电熔接头,其质量的好坏直接影响管道系统的安全。分析了超声聚焦检测技术对聚乙烯管电熔接头各类缺陷的检出能力。在此基础上,运用相控阵超声技术及B扫描实时成像超声方法检测大量含缺陷接头,对比超声成像图与接头实剖图,发现该方法有较高的检测灵敏度和检出精度,可以应用于工程实践。  相似文献   

7.
A comparative analysis of the frequency parameters of echo signals from artificial reflectors of different shapes and from a natural spill-type flaw has been performed. The use of the instantaneous frequencies of ultrasonic signals that correspond to certain instants inside a pulse was suggested as an informative parameter for determining the flaw type. Instantaneous frequency is estimated based on the algorithm of the continuous wavelet transform, which increases the noise immunity of the method. It is shown that for the algorithm to be practically implemented it is appropriate to present the results in the form of dimensionless parameters, namely, normalized frequency deviations determined between the pulse center, edge, and tail. Their joint application makes it possible, in particular, to reliably distinguish echo signals that are reflected at junction flaws that rise to the surface of a test object (notches, dihedral angles, and spills of the weld joints), flat specimen surfaces, and local flaws, such as cylindrical side through holes and flat bottom drills.  相似文献   

8.
The problem of using an elastic organosilicon polymer (??aquapolymer??) as an immersion medium for providing a stable acoustic contact between a test object and a piezoprobe in the process of automated ultrasonic testing of objects with rough surfaces is considered. The use of an ??aquapolymer?? allows one to decrease the consumption of water during ultrasonic testing. Flaw images were reconstructed using a modification of the SAFT method, which takes the profile of a test object into account; this allows improvement of the image quality. An algorithm for obtaining information on the profile of the surface of a test object and taking this profile into account during reconstruction of flaw images with the SAFT method is proposed. Model experiments yielded flaw images with the refraction of beams on a rough surface taken into account.  相似文献   

9.
建立了基于多级半带滤波器的超声相控阵聚焦延时系统,以提高仪器延时精度。研究了聚焦延时原理与延时算法的实现。首先,采用内插滤波的方法,设计了半带滤波器作为内插滤波器;然后,对8倍内插结构进行了改进,通过多级半带内插滤波器合成技术,将合成后的滤波器分解为8个子滤波器进行同时滤波,使得内插与多相分解可同时进行。最后,通过对延时算法的仿真分析与现场可编程门阵列(FPGA)的实现,验证了此算法的可行性。实验结果表明:该系统在100 MHz采样率的条件下可实现1.25 ns延时精度,与同性能普通有限长单位冲激响应(FIR)内插滤波器相比,运算量最大可减少21.4%。此方案在运算量、计算速度、分辨率、性价比方面均具有较大优势,非常适合于实时性强、精度高的聚焦延时算法的实现。  相似文献   

10.
The prospects for applying the double-scanning mode in ultrasonic nondestructive testing for recording echo signals are considered. A variant of implementing the double-scanning mode using a phased antenna array is proposed. Algorithms for reconstructing flaw images by the method of projection in the spectral space and the combined SAFT (C-SAFT) method are presented. It is shown that, to obtain high-quality flaw images, the ultrasound propagation velocity in a tested object must be known to within a high accuracy (at least 0.5%). The results of numerical and model experiments in which images were obtained by these methods are presented.  相似文献   

11.
The possibility of applying coherent methods to imaging of flaws in objects with plane-parallel boundaries during ultrasonic inspection is considered. A version of the SAFT method for obtaining flaw images on the basis of one or several echo signals measured in the transceiver mode and the correlation imaging method are considered. A variant of using the maximum-entropy method for obtaining flaw images from measured echo signals is proposed. A substantial advantage of the maximum-entropy method over the SAFT and correlation methods is demonstrated. The results of numerical experiments in which images were obtained with the use of the aforementioned methods are presented. It is shown that the obtainment of high-quality flaw images requires knowledge of the velocity of ultrasound propagation and the object thickness with a low error (no worse than 0.5%). For this purpose, additional measurements must be performed, e.g., in the dual-probe operating mode, which will allow determination of the velocity of sound and the thickness of the tested object. The results of using these methods for obtaining images in model experiments are presented  相似文献   

12.
The possibility of obtaining images of type-69 flaws in blades of the railroad rail base is considered. For this purpose, a modification of the SAFT algorithm is proposed, in which, during the calculation of echo-signal delays, multiple reflections of an ultrasonic pulse from the rail boundaries are taken into account. The Fermat principle is used to calculate the delay times. Typical acoustic schemes, each of which can be used to obtain partial flaw images, are determined. Combining the partial images in a final image allows the detection of type-69 flaws. It is shown that the proposed algorithm can be applied for obtaining type-69 images in P65 railroad rails.  相似文献   

13.
A reference-free method is considered for concurrent measurement of the speed of ultrasonic vibrations and the thickness of concrete constructional products with ultrasonic antenna arrays that use the “focusing to a plane” algorithm.  相似文献   

14.
Electrical capacitance tomography (ECT) is a visualization measurement method for two-phase flow. Imaging permittivity distributions using electrical capacitance tomography has always been one of the most significant issues studied by scholars, and the algorithm will have a great impact on the accuracy of image reconstruction result. This paper applies simulated annealing (SA) algorithm to image reconstruction in ECT. However, some parameters of SA algorithm need to be optimized in order to obtain better reconstructed images in ECT. The influence of different parameter values in SA algorithm for image reconstruction in ECT is studied, and a set of optimal parameters of the SA algorithm is obtained based on the orthogonal experimental design method in this paper. At the same time, simulation and static experiments are conducted. Reconstructed images by SA algorithm with optimized parameter are compared with the linear back projection (LBP) and Landweber iterative algorithms. The results show that better images can be obtained for typical oil-gas two-phase flow using SA algorithm. The quality and shape fidelity of reconstructed image for the central object are obviously improved.  相似文献   

15.
X‐ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation‐based X‐ray absorption tomography. In propagation‐based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase‐contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase‐contrast images, and investigate the use of different registration algorithms for aligning in‐line phase‐contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation‐based computed tomography. Further, it is shown that registration of phase‐contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase‐contrast images if multilayer X‐ray optics are used. To address this, we compared two registration algorithms for aligning phase‐contrast images acquired by magnified X‐ray nanotomography: one based on cross‐correlation and one based on mutual information. We found that the mutual information‐based registration algorithm was more robust than a correlation‐based method.  相似文献   

16.
It is proposed to use the maximum-entropy method (MEM) for processing ultrasonic echo signals for reconstructing images of reflectors with a high signal-to-noise ratio and a low level of “side lobes” of the point-scattering function. When processing echo signals, the pulse-propagation paths can be considered taking reflections from irregular boundaries of a tested object with the wave-type transformation into account. In model experiments, images of reflectors were obtained taking the refractions of rays at the rough surface into account, when echo signals were recorded both using an ordinary single-element transducer in the transceiver mode and an antenna array that recorded echo signals in the double- and triple-scanning modes. The reconstructed images have a resolution that exceeds the resolution according to the Rayleigh criterion. The MEM makes it possible to obtain images of flaws with low-level side lobes, when less than 10% of the complete set of echo signals are used.  相似文献   

17.
A modification of the SAFT method for obtaining flaw images in test objects containing three regions with different velocities of sound (SV) is proposed. Complex composite welded joints and repair welds are classified as objects in which the SV in a welded joint may differ from the velocity in a parent metal by >5%; therefore, a high-quality image of flaws can be obtained by taking different SVs into account. To solve this problem, a method for obtaining a test object with three regions with different SVs is proposed. The delays of propagating ultrasonic pulses were calculated using the Fermat principle. The results of reconstructing flaw images in a 300 welded joint from echo signals obtained as a result of numerical simulation by the finite-element method are presented. The images obtained by the SAFT method without taking different SVs into account are displaced from their true position, thus they do not allow determination of their coordinates and location. Consideration of different SVs allows one to obtain unshifted reflections of flaw images and, hence, evaluate the types and dimensions of flaws more accurately.  相似文献   

18.
The results of the visualization of artificial reflectors of different shapes and a natural flaw of the faulty-fusion type in the bottom run are presented. The results of the evaluation of the instantaneous frequency, which is proposed as an additional informative index for shape classification of flaws, are presented for the same reflectors. A comparative analysis of the data that were obtained by these two methods was performed. The measurement results are represented in the form of B-scans for phased arrays, which provide a clear idea of the spatial location and configuration of reflectors, and in the form of diagrams of the dependences of the normalized frequency deviations for single dual transducers.  相似文献   

19.
The problem of automating detection of flaws (gas pockets and spills) in welds obtained by electron-beam welding, using the ultrasonic echo method which is implemented by slanted introduction of ultrasonic waves into a thin zirconium fuel shell, is considered. Algorithms for automatic detection of flaws and evaluation of their relative dimensions are proposed. Experimental results confirming the efficiency of the algorithms proposed are reported.  相似文献   

20.
To test objects of materials with a high level of structural noise, use of thinned antenna arrays (TAAs) that have a large spatial aperture and consist of a small number of elements that are positioned from one another at a distance larger than the wavelength is proposed. A TAA moves over the surface of a tested object and echo signals are recorded during transmission and reception by different pairs of piezoelectric plates. For each transmitter-receiver pair, the measured echo signals are used to reconstruct partial images, which are then coherently added together to form the final image, by the SAFT method. A procedure for calibrating each piezoelectric plate of the TAA in order to determine the coordinates of its center for efficient coherent summation of partial images has been developed. The calibration procedure reduces the requirements for the accuracy of the arrangement of the piezoelectric plates of the TAA on a prism. The use of the technology of TAAs allows one to obtain images of flaws in repair welds with a signal-to-noise ratio (SNR) that is 12 dB higher than the SNR for an image obtained using the technique for a single-element transducer. The results of testing specimens of 800 pipelines with repair welds in weld seams are presented. The efficiency of this method is shown in comparison to the method in which a single-element piezoelectric transducer is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号