首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
National and International Standards (e.g. BS 6841 and ISO 2631-1) provide methodologies for the measurement and assessment of whole-body vibration in terms of comfort and health. The EU Physical Agents (Vibration) Directive (PAVD) provides criteria by which vibration magnitudes can be assessed. However, these standards only consider upright seated (90°) and recumbent (0°) backrest angles, and do not provide guidance for semi-recumbent postures. This article reports an experimental programme that investigated the effects of backrest angle on comfort during vertical whole-body vibration. The series of experiments showed that a relationship exists between seat backrest angle, whole-body vibration frequency and perceived levels of discomfort. The recumbent position (0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 45° were the least uncomfortable. A new set of frequency weighting curves are proposed which use the same topology as the existing BS and ISO standards. These curves could be applied to those exposed to whole-body vibration in semi-recumbent postures to augment the existing standardised methods. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This article reports new experimental data systematically investigating the effect of backrest angle on discomfort experienced. It demonstrates that most discomfort is caused in a recumbent posture and that least was caused in a semi-recumbent posture.  相似文献   

2.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

3.
《Ergonomics》2012,55(2):228-245
Whole-body vibration exerts a substantive influence in many work environments. The primary objective for this work was to quantify such effects by identifying those moderating variables that influence the degree to which performance is affected. To achieve this, a comprehensive meta-analysis was conducted, which synthesized the existing research evidence. A total of 224 papers and reports were identified and, from these 115 effect sizes were derived from 13 experiments that survived the screening procedure. Results indicate that vibration acts to degrade the majority of goal-related activities, especially those with high demands on visual perception and fine motor control. Gaps in the current research literature are identified and suggestions offered with regard to a more theoretically-driven approach to testing vibration effects on human performance.  相似文献   

4.
《Ergonomics》2012,55(3):365-374
Standing people are exposed to whole-body vibration in many environments. This paper investigates the effects of horizontal whole-body vibration and standing posture on task performance. Sixteen participants were exposed to random vibration (up to 4 Hz) whilst performing a timed pegboard task in two standing postures. Objective and subjective indicators of performance were used. Time taken to complete the task increased progressively with increases in vibration magnitude. The fore-and-aft posture generally showed greater performance decrements and postural interruptions (>1.0 ms?2 root mean square) than the lateral. For both postures, performance was better during y-axis vibration than during x-axis vibration. Subjective ratings showed similar trends to time data. Impairments due to dual axis exposure were well predicted using root sum of squares calculations based on single axis components. These results indicate that best performance for those standing in moving environments will be achieved if individuals adopt a lateral posture with the most severe vibration in the y-axis.

Statement of Relevance: People have a need to work during transportation, either working for the transport provider or as a passenger. All modes of transport result in travellers being exposed to horizontal motion. This study demonstrates that task disturbance is affected by the orientation of the standing person to the vibration and, therefore, vehicle layouts can be optimised.  相似文献   

5.
《Ergonomics》2012,55(5):696-715
This research focuses on quantifying six-degree-of-freedom (6-DOF) whole-body vibration (WBV) exposure levels that occur in Northern Ontario skidders during routine field operating tasks. 6-DOF vibration running root-mean-square (RMS) acceleration levels at the operator/seat interface were determined for eight skidders while driving loaded, driving unloaded, picking up a load, dropping off a load and ploughing logs under field operating conditions. The acceleration data were weighted in accordance with ISO 2631–1:1997 and evaluated for both health and comfort outcomes. The mean running RMS weighted translational and rotational accelerations all exceeded 0.36 m/s2 and 0.14 rad/s2. The greatest average accelerations occurred while driving unloaded with this condition displaying translational vibration total values (VTV) that exceeded the upper limit of the ISO 2631–1:1997 health caution zone within an average of 2.3 h. Utilizing 6-DOF VTV, virtually all operating conditions would be designated as uncomfortable.

Statement of Relevance: This study provides one of the most comprehensive reports on vibration exposures in seated vehicle operators. The results are geared towards ergonomists with discussions on health effects and measurement concerns, while providing the raw vibration exposure data that will be useful to vehicle, component and vibration sensor designers.  相似文献   

6.
《Ergonomics》2012,55(10):1305-1310
When seeking to reduce vibration in transport it is useful to know how much reduction is needed for the improvement to be noticeable. This experimental study investigated whether relative difference thresholds for the perception of whole-body vertical vibration by seated persons depend on the frequency or magnitude of vibration. Relative difference thresholds for sinusoidal seat vibration were determined for 12 males at three vibration magnitudes and eight frequencies (2.5, 5, 10, 20, 40, 80, 160, 315 Hz) using the three-down-one-up method in conjunction with a two-interval-forced-choice procedure. The median relative difference thresholds were in the range 9.5% to 20.3%. There appeared to be a frequency-dependence at the lowest vibration magnitude, such that higher frequencies had higher difference thresholds. The relative difference thresholds depended on the vibration magnitude only at 2.5 and 315 Hz. The influence of both vibration frequency and vibration magnitude on the measured difference thresholds suggests that vision (at 2.5 Hz) and hearing (at 315 Hz) contributed to the perception of changes in vibration magnitude.  相似文献   

7.
《Ergonomics》2012,55(11):1800-1812
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms? 2 r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable.  相似文献   

8.
The human response to vibration is typically studied using linear estimators of the frequency response function, although different literature works evidenced the presence of non-linear effects in whole-body vibration response. This paper analyses the apparent mass of standing subjects using the conditioned response techniques in order to understand the causes of the non-linear behaviour. The conditioned apparent masses were derived considering models of increasing complexity. The multiple coherence function was used as a figure of merit for the comparison between the linear and the non-linear models. The apparent mass of eight male subjects was studied in six configurations (combinations of three vibration magnitudes and two postures). The contribution of the non-linear terms was negligible and was endorsed to the change of modal parameters during the test. Since the effect of the inter-subject variability was larger than that due to the increase in vibration magnitude, the biodynamic response should be more meaningfully modelled using a linear estimator with uncertainty rather than looking for a non-linear modelling.  相似文献   

9.
Passengers and crew on fast boats can experience high magnitudes of whole-body vibration and mechanical shocks that may present risks to health and cause discomfort. This study investigated the influence of reclining a seat on the discomfort caused by fast-boat motion and whether discomfort can be predicted by overall ride values according to current standards. Subjects judged the discomfort of simulations of a recorded fast boat motion in a seat reclined by 0°, 15°, 30°, 45°, or 60°. Reclining the seat caused no significant change in overall discomfort, suggesting that if a reclined seat can be shown to reduce risks of injury it may be acceptable in respect of comfort. The findings are inconsistent with the predictions of standards and show that revised frequency weightings are required to account for seat pan or seat back inclination.  相似文献   

10.
《Ergonomics》2012,55(10):1647-1659
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.  相似文献   

11.
The purposes of this study were to characterize the influence of seat back angle variations on the neck comfort of sleeping passengers without a pillow and provide suggestions for the design of economy-class seats. In this study, 17 subjects were subjected to a sleep experiment to test the effect of the backrest angle on head and neck rotation and the fatigue level of the neck muscles. The results showed that a reclined backrest (positioned at 110°) caused greater rotation of the head and neck and greater fatigue of the neck muscles than a vertical backrest. Additionally, the higher was the subject's head extended above the top of the backrest, the more complicated the head and neck rotation was and the more intense the stretching of muscles was. We conclude that, when sleeping in a sitting position without head support, passengers were more likely to experience neck muscle fatigue with the reclined backrest than with the vertical backrest. Passenger height was also found to be an important factor contributing to head and neck fatigue. On the basis of the experimental results, we offer suggestions for the design of backrests to improve passengers' sleeping experience. Our research and suggestions provide a new path for innovation in the design of economy-class seats and could help to improve the travel experience.  相似文献   

12.
Changes in the seating condition may change the body posture which could affect the transmission of vibration through a vehicle seat. This study investigates the effect of different seating conditions on the transmission of vibration through a car seat. Ten male subjects sat on the passenger seat of a sedan car driven at 60 km/h adopting one of six conditions at a time. The VDV was measured on the seat and backrest. Backrest contact affected the VDV measured on the seat pan in the z- and y-axis only. Increasing the backrest angle increased the VDV at the backrest in the x-direction and reduced the VDV at the backrest in the z-direction. With the increase in the backrest angle, the total VDV at the backrest became higher than the total VDV on the seat pan. The study showed no effect of foot position and contact with a headrest on the VDVs.Relevance to industryThis research presents the effect of the seating condition on the transmission of vibration through the seat pan and backrest of a car seat. Research of this kind may help seat manufacturers recommend seating conditions that reduce discomfort caused by whole-body vibration.  相似文献   

13.
《Ergonomics》2012,55(5):842-855
This study was carried out to investigate the influence of the body posture and of the foot support on the apparent mass distribution at the feet of standing subjects exposed to whole-body vibration. The apparent mass was measured at the driving point through a capacitive pressure sensor matrix, which allowed to separate the contributions of the different foot regions. The overall value was also determined using a conventional measurement system based on piezoelectric load cells. Ten male subjects performed 15 tests with three kinds of feet supports (flat rigid, anatomic rigid and flat soft) in five different postures. Static components of the pressure measurements were exploited to identify which fraction of the weight is supported by the rearfoot, the midfoot and the forefoot in the various test configurations. Factorial design of experiments on different response variables showed that the apparent mass is affected by the posture but not by the type of feet contact surface; conversely, the presence of insoles varies with the apparent mass distribution on the different feet parts.

Practitioner Summary: The response of standing subjects to whole-body vibration has always been considered as a global parameter measured at the driving point, neglecting the local phenomena occurring in different foot parts. We have experimentally identified the apparent mass distribution of subjects in different standing postures and with different foot supports.  相似文献   

14.
《Ergonomics》2012,55(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W d frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations.

Statement of Relevance: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

15.
Yu Huang 《Ergonomics》2014,57(11):1724-1738
This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70–88 dBA SEL), 7 magnitudes of vibration (0.146–2.318 ms? 1.75) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a ‘masking effect’ of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.  相似文献   

16.
In this paper, we propose a whole-body remote control framework that enables a robot to imitate human motion efficiently. The framework is divided into kinematic mapping and quadratic programming based whole-body inverse kinematics. In the kinematic mapping, the human motion obtained through a data acquisition device is transformed into a reference motion that is suitable for the robot to follow. To address differences in the kinematic configuration and dynamic properties of the robot and human, quadratic programming is used to calculate the joint angles of the robot considering self-collision, joint limits, and dynamic stability. To address dynamic stability, we use constraints based on the divergent component of motion and zero moment point in the linear inverted pendulum model. Simulation using Choreonoid and a locomotion experiment using the HUBO2+ demonstrate the performance of the proposed framework. The proposed framework has the potential to reduce the preview time or offline task computation time found in previous approaches and hence improve the similarity of human and robot motion while maintaining stability.  相似文献   

17.
There is little knowledge on performance during vibration exposure combined with occupational hazards such as bent or twisted postures. In addition, little information is available on the effective use of armrests during performance-related tasks. This paper investigates the influence of sitting in different working postures on the reaction time and perceived workload of subjects exposed to whole-body vibration. Twenty-one subjects were exposed to 1–20 Hz random vibration in the vertical and fore-and-aft directions. A choice reaction time task was completed while seated in four posture conditions: upright or twisted, with and without armrests. Following the task, participants completed the NASA TLX workload assessment. Posture combined with whole-body vibration exposure had a significant influence on the ability to perform the task. The combined environmental stressors significantly degraded the performance; not only did their reaction times become compromised, the participants’ workload demand also increased. The most severe decrement in performance and workload was experienced while seated in a twisted posture with no armrest support. The inclusion of armrests significantly improved the participants’ ability to complete the task with a lower workload demand.

Relevance to industry

Twisted postures have been observed in a variety of machine operations and it is important to determine their influence on operator workload. Many off-road machines have suspension seats fitted with armrests; this paper demonstrates that armrest support provides additional benefits for off-road machine operators under combined environmental stressors.  相似文献   


18.
考虑非线性非稳态油膜力、局部碰摩力和质量不平衡的耦合激励,建立偏角不对中轴系非线性动力学方程,数值模拟并分析不对中偏角量对系统振动特性的影响,根据计算结果制定不对中偏角量的工艺控制标准.仿真计算研究表明:非稳态油膜力激励下,轴系动力学方程形式繁琐,求解困难,导致系统产生复杂的动力学行为,难以通过理论分析有效控制轴系非线性振动,而通过制定工艺可以避免理论研究难题,达到控制非线性振动级别的目的.  相似文献   

19.
Due to the high cost of conducting field measurements, questionnaires are usually preferred for the assessment of physical workloads and musculoskeletal disorders (MSDs). This study compares the physical workloads of whole-body vibration (WBV) and awkward postures by direct field measurements and self-reported data of 45 occupational drivers. Manual materials handling (MMH) and MSDs were also investigated to analyse their effect on drivers' perception. Although the measured values for WBV exposure were very similarly distributed among the drivers, the subjects' perception differed significantly. Concerning posture, subjects seemed to estimate much better when the difference in exposure was significantly large. The percentage of measured awkward trunk and head inclination were significantly higher for WBV-overestimating subjects than non-overestimators; 77 and 80% vs. 36 and 33%. Health complaints in terms of thoracic spine, cervical spine and shoulder–arm were also significantly more reported by WBV-overestimating subjects (42, 67, 50% vs. 0, 25, 13%, respectively). Although more MMH was reported by WBV-overestimating subjects, there was no statistical significance in this study.  相似文献   

20.
Whole-body vibration exerts a substantive influence in many work environments. The primary objective for this work was to quantify such effects by identifying those moderating variables that influencethe degree to which performance is affected. To achieve this, a comprehensive meta-analysis was conducted, which synthesized the existing research evidence, A total of 224 papers and reports were identified and, from these 115 effect sizes were derived from 13 experiments that survived the screening procedure. Results indicate that vibration acts to degrade the majority of goal-related activities, especially those with high demands on visual perception and fine motor control. Gaps in the current research literature are dentified and suggestions offered with regard to a more theoretically-driven approach to testing vibration effects on human performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号