首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Shifts in the sigmoidal kinetics of allosteric threonine deaminase promoted by isoleucine and valine binding control branched chain amino acid biosynthesis in Escherichia coli. A highly conserved alpha-helix in the C-terminal regulatory domain of the tetrameric enzyme was previously implicated in effector binding and feedback inhibition. Double (447, 451) and triple (447, 451, 454) alanine replacements for the conserved amino acids leucine 447, leucine 451, and leucine 454 in this region yield enzyme variants that show increased sigmoidality in steady-state kinetics, and which are less sensitive to the allosteric modifiers isoleucine and valine. Equilibrium binding studies using fluorescence, enzyme kinetic, and calorimetric approaches indicate that the enzyme variants possess reduced affinity for isoleucine and valine, and suggest that heterotropic ligands can bind to the same site to promote their different effects. The increase in sigmoidal kinetics for the mutants relative to wild-type threonine deaminase may be attributable to the elimination of L-threonine binding to the effector sites, which activates the wild-type enzyme. Enzyme kinetic data and isotherms for active site ligand binding to the mutants can be analyzed in terms of a simple two-state model to yield values for allosteric parameters that are consistent with previous estimates based on an expanded two-state model for homotropic cooperativity for threonine deaminase.  相似文献   

2.
Acetohydroxy acid synthase (AHAS) and threonine deaminase (TD) activities were found in Streptococcus bovis and shown to be involved in the biosynthesis of the branched chain amino acids isoleucine, leucine and valine. Apparent lack of repression of AHAS synthesis by the end-products and reduced sensitivity of S. bovis growth to analogues of the branched chain amino acids suggested that secretion of isoleucine, leucine and valine in the growth medium may be a consequence of the regulatory features of AHAS. A glycyl-leucine-resistant mutant with reduced TD activity secreted a reduced amount of isoleucine and an increased amount of valine, which might be a result of the reduced rate of synthesis of the isoleucine precursor alpha-ketobutyrate and of a consequent preferential carbon flow through the valine branch of the pathway.  相似文献   

3.
We have shown previously that a low concentration of tritiated deoxyadenosine, i.e., 1 microCi/ml, selectively kills wild-type S49 murine lymphoma cells. Mutant cells resistant to [3H] deoxyadenosine lacked adenosine kinase completely but retained a significant level of deoxyadenosine phosphorylating activity. To study further the specificity of [3H] deoxyadenosine selection, lymphoma cell clones resistant to 15 microCi/ml [3H] deoxyadenosine have been derived. The resistant line, S49-dA15, is also resistant to high levels of nonradioactive deoxyadenosine and to deoxyguanosine but remains sensitive to thymidine. The thymidine inhibition of the growth of the mutant, in contrast to that of the wild-type cells, cannot be prevented by deoxycytidine. The mutant line lacks deoxycytidine kinase that also phosphorylates deoxyadenosine. In addition, the mutant cells excrete a large amount of deoxycytidine into culture medium, consistent with a failure of salvage of the nucleoside in the absence of an appropriate kinase, i.e., deoxycytidine kinase. In contrast, a deoxycytidine kinase-deficient cell line that was selected with arabinosylcytosine does not excrete deoxycytidine and contains high deoxycytidine deaminase activity. [3H] Deoxyadenosine can be used as a selective agent for specific selection of deoxycytidine kinase-negative mutants.  相似文献   

4.
Three respiratory-deficient mutants of cytochrome oxidase subunit I in the yeast mitochondrion have been sequenced. They are located in, or near, transmembrane segment VI, the catalytic core of the enzyme. Respiratory-competent revertants have been selected and studied. The mutant V244M was found to revert at the same site in valine (wild-type), isoleucine or threonine. The revertants of the mutant G251R were of three types: glycine (wild-type), serine and threonine at position 251. A search for second-site mutations was carried out but none were found. Among 60 revertants tested, the mutant K265M was found to revert only to the wild-type allele.  相似文献   

5.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase catalyzes the cyclopropane ring fragmentation and deamination of ACC. Replacement of cysteine with alanine at a reactive thiol site, Cys-162, of ACC deaminase did not affect the enzyme activity, in spite of the previous result that modification of Cys-162 caused complete loss of the enzyme activity. Substitution of glycine or valine for the cysteine residue gave a higher Km for ACC without a significant change of the K0, indicating that changes of the amino acid side chain had structural effects on substrate binding. Replacement of lysine with alanine at the pyridoxal phosphate (PLP) binding site of the ACC deaminase caused a lower content of PLP and loss of detectable activity of ACC deamination. This mutant enzyme, K51A, showed absorption peaks at 330 nm and 405 nm. The peak at 405 nm was shifted to about 425 nm by the addition of ACC, D-, L-alanine, and D-, L-serine. The formation of aldimine complexes indicated by the spectral shift was reversible. It is suggested that lysine 51 affects the formation of holoenzyme and is important in catalysis.  相似文献   

6.
Mutagenesis and subsequent selection of Arabidopsis thaliana plantlets on a growth inhibitory concentration of lysine has led to the isolation of lysine-resistant mutants. The ability to grown on 2 mM lysine has been used to isolate mutants that may contain an aspartate kinase with altered regulatory-feedback properties. One of these mutants (RL 4) was characterized by a relative enhancement of soluble lysine. The recessive monogenic nuclear transmission of the resistance trait was established. It was associated with an aspartate kinase less sensitive to feedback inhibition by threonine. Two mutants (RLT 40 and RL 4) in Arabidopsis, characterized by an altered regulation of aspartate kinase, were crossed to assess the effects of the simultaneous presence of these different aspartate kinase forms. A double mutant (RLT40 x RL4) was isolated and characterized by two feedback-desensitized isozymes of aspartate kinase to, respectively, lysine and threonine but no threonine and/or lysine overproduction was observed. Genetical analysis of this unique double aspartate kinase mutant indicated that both mutations were located on chromosome 2, but their loci (ak1 and ak2) were found to be unlinked.  相似文献   

7.
We showed that the efficacy of the new 2'-deoxycytidine (2'-dCyd) analogue antimetabolite 2'-deoxy-2'-methylidenecytidine (DMDC) correlates well with tumor levels of cytidine (Cyd) deaminase in human cancer xenograft models. DMDC was highly effective in tumors with higher levels of Cyd deaminase, whereas lower levels yielded only slight activity. In contrast, gemcitabine (2',2'-difluorodeoxycytidine), which has action mechanisms similar to those of DMDC, is only slightly active in tumors with higher levels of the enzyme. In the present study, we investigated the roles of Cyd deaminase in the antitumor activity of the two 2'-dCyd antimetabolites in 13 human cancer cell lines. Tetrahydrouridine, an inhibitor of Cyd deaminase, reduced the antiproliferative activity of DMDC (P = 0.0015). Furthermore, tumor cells transfected with the gene of human Cyd deaminase become more susceptible to DMDC both in vitro and in vivo. These results indicate that Cyd deaminase is indeed essential for the activity of DMDC. In contrast, the antiproliferative activity of gemcitabine was increased to some extent by tetrahydrouridine (P = 0.0277), particularly in tumor cell lines with higher levels of Cyd deaminase. This suggests that higher levels of Cyd deaminase may inactivate gemcitabine. Among nucleosides and deoxynucleosides tested, only dCyd, a natural substrate of both Cyd deaminase and dCyd kinase, suppressed the antiproliferative activity of DMDC by up to 150-fold. Because the Vmax/Km of DMDC for dCyd kinase was 8-fold lower than that for dCyd, the activation of DMDC to DMDC monophosphate (DMDCMP) by dCyd kinase might be competitively inhibited by dCyd. In addition, the dCyd concentrations in human cancer xenografts were inversely correlated with levels of Cyd deaminase activity. It is therefore suggested that higher levels of Cyd deaminase reduce the intrinsic cellular concentrations of dCyd in tumors, resulting in efficient activation of DMDC to DMDCMP by dCyd kinase. These results indicate that the efficacy of DMDC may be predicted by measuring the activity of Cyd deaminase in tumor tissues before treatment starts and that DMDC may be exploited in a new treatment modality: tumor enzyme-driven cancer chemotherapy.  相似文献   

8.
Here we report the isolation of influenza virus A/turkey/Minnesota/833/80 (H4N2) with a mutation at the catalytic residue of the neuraminidase (NA) active site, rendering it resistant to the novel NA inhibitor 4-guanidino-Neu5Ac2en (GG167). The resistance of the mutant stems from replacement of one of three invariant arginines (Arg 292-->Lys) that are conserved among all viral and bacterial NAs and participate in the conformational change of sialic acid moiety necessary for substrate catalysis. The Lys292 mutant was selected in vitro after 15 passages at increasing concentrations of GG167 (from 0.1 to 1,000 microM), conditions that earlier gave rise to GG167-resistant mutants with a substitution at the framework residue Glu119. Both types of mutants showed similar degrees of resistance in plaque reduction assays, but the Lys292 mutant was more sensitive to the inhibitor in NA inhibition tests than were mutants bearing a substitution at framework residue 119 (Asp, Ala, or Gly). Cross-resistance to other NA inhibitors (4-amino-Neu5Ac2en and Neu5Ac2en) varied among mutants resistant to GG167, being lowest for Lys292 and highest for Asp119. All GG167-resistant mutants demonstrated markedly reduced NA activity, only 3 to 50% of the parental level, depending on the particular amino acid substitution. The catalytic mutant (Lys292) showed a significant change in pH optimum of NA activity, from 5.9 to 5.3. All of the mutant NAs were less stable than the parental enzyme at low pH. Despite their impaired NA activity, the GG167-resistant mutants grew as well as parental virus in Madin-Darby canine kidney cells or in embryonated chicken eggs. However, the infectivity in mice was 500-fold lower for Lys292 than for the parental virus. These findings demonstrate that amino acid substitution in the NA active site at the catalytic or framework residues, followed by multiple passages in vitro, in the presence of increasing concentrations of the NA inhibitor GG167, generates GG167-resistant viruses with reduced NA activity and decreased infectivity in animals.  相似文献   

9.
The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 has two putative pathways for ammonium assimilation: the glutamine synthetase-glutamate synthase cycle, which is the main one and is finely regulated by the nitrogen source; and a high NADP-dependent glutamate dehydrogenase activity (NADP-GDH) whose contribution to glutamate synthesis is uncertain. To investigate the role of the latter, we used two engineered mutants, one lacking and another overproducing NADP-GDH. No major disturbances in the regulation of nitrogen-assimilating enzymes or in amino acids pools were detected in the null mutant, but phycobiline content, a sensitive indicator of the nutritional state of cyanobacterial cells, was significantly reduced, indicating that NADP-GDH plays an auxiliary role in ammonium assimilation. This effect was already prominent in the initial phase of growth, although differences in growth rate between the wild type and the mutants were observed at this stage only at low light intensities. However, the null mutant was unable to sustain growth at the late stage of the culture at the point when the wild type showed the maximum NADP-GDH activity, and died faster in ammonium-containing medium. Overexpression of NADP-GDH improved culture proliferation under moderate ammonium concentrations. Competition experiments between the wild type and the null mutant confirmed that the presence of NADP-GDH confers a selective advantage to Synechocystis sp. strain PCC 6803 in late stages of growth.  相似文献   

10.
In the outer membrane phospholipase A (OMPLA) of Escherichia coli, Ser144 has previously been identified by chemical modification as the active site serine residue. In a specific OMPLA-negative mutant strain, the pldA gene coding for OMPLA was shown to differ from the wild-type gene by a single point mutation, resulting in the substitution of Ser152 by phenylalanine. The role in catalysis of these two serine residues in OMPLA was investigated by site-directed mutagenesis. Ser144 and Ser152 were replaced one at the time by either alanine, valine, phenylalanine, threonine, or cysteine. Ser152 was furthermore replaced by asparagine. Replacement of Ser144 by cysteine resulted in 1% residual activity, whereas the other substitutions at this position yielded virtually inactive enzymes. Substitution of Ser 152 by threonine or asparagine resulted in 40% and 2% residual activity respectively, whereas all other substitutions at this position resulted in the loss of enzymatic activity. We propose that Ser144 is the nucleophile in catalysis, and that Ser152 is involved in hydrogen bonding either to the catalytic triad or in the oxyanion hole.  相似文献   

11.
We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.  相似文献   

12.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.  相似文献   

13.
We have found that azide-resistant mutants of Salmonella typhimurium and of other bacteria studied produce a substance which inactivates the azide. The production of this substance was proved by the demonstration of a satellite growth of azide-sensitive cells around colonies of azide-resistant mutants and by testing azide inactivating properties of culture filtrates of the azide-resistant strains. The same substance was found to be present in lower concentrations in culture filtrates of wild-type sensitive strains. In both cultures of sensitive strains, it was apparently produced by the resistant mutants and not by the sensitive cells. The substance does not pass across a dialysis membrane and is heat stable. It has a high molecular weight but is not a protein.  相似文献   

14.
Full resistance to the virulent phage C1 in E. coli N68 is usually accompanied by decreased capacity for penicillinacylase production. For rapid selection of phage resistant mutants possessing penicillinacylase activity comparable with that of the initial bacteria a method was proposed. The method provided comparison of the penicillinacylase activity of the bacterial colonies grown on solid media with addition of phenylacetic acid as the enzyme inductor. A great number of mutants forming colonies on the solid medium in the presence of phage C1 was compared with the use of the above method and a mutant of E. coli N68-PR-I resistant to the phage with penicillinacylase activity equal to 68 per cent of that of the bacteria of the wild type was selected. Mutant N68-R-5 with increased resistance to phage CI was selected among the mutants of E. coli N68 resistant to rifampicin. The penicillinacylase activity of this mutant was not less than of E. coli N68. Phage CI can lyse the cells of strain N68-R-5. Still these bacteria possess a markedly decreased capacity for the phage reproduction.  相似文献   

15.
Okadaic acid (OA)-resistant variants of Chinese hamster ovary cells, clones CHO/OAR6-6 and CHO/OAR2-3, were isolated from a CHO-K1 culture. These variant cells were 17- to 26-fold more resistant to OA than the parental cells. The phosphorylase phosphatase activity of the variant cell extracts was 2- to 4-fold more resistant to OA than that of the parental cells in the presence of inhibitor 2, a specific inhibitor of type 1 protein serine/threonine phosphatase (PP1). Nucleotide sequencing of PP2A alpha (an isotype of PP2A catalytic subunit) cDNA demonstrated that both variants have a T-->G transversion at the first base of codon 269 (805 nt), which results in substitution of glycine for cysteine. We expressed in COS-1 cells a mutant PP2A alpha tagged with the influenza hemagglutinin epitope. The recombinant mutant PP2A alpha protein immunoprecipitated with an anti-influenza hemagglutinin antibody was more resistant than the wild type to OA, their IC50 values being 0.65 nM and 0.15 nM, and their IC80 values being 4.0 nM and 0.45 nM, respectively. The cysteine at residue 269 present only in highly OA-sensitive protein serine/threonine phosphatase catalytic subunit isozymes, PP2A alpha, PP2A beta, and PPX, is suggested to be involved in the binding of OA. CHO/OAR6-6 and CHO/OAR2-3 cells also overexpressed the P-glycoprotein, and the efflux of OA was more rapid. It is suggested that the PP2A alpha mutation in cooperation with a high level of P-glycoprotein makes the CHO-K1 variants highly resistant to OA.  相似文献   

16.
17.
Salmonella serotype typhimurium transpositional mutants altered in resistance to biliary salts and detergents were isolated previously. We have characterized further the LX1054 mutant strain, the most sensitive of them. The chromosomal DNA segment flanking transposon insertion was cloned and sequenced. The highest level of identity was found for the acrB (formerly acrE) gene of Escherichia coli, a gene encoding a drug efflux pump of the Acr family. LX1054 exhibited a reduced capacity to colonize the intestinal tract. After passages in mice, the mutant strain lost the sensitive phenotype. In vitro, a resumption of growth appeared after 17 h of culture in medium with cholate or other tested biological or chemical detergents. Then, the acquired resistant phenotype seemed stable. The data suggested a role of S. typhimurium acrB-like gene in resistance to biliary salts and detergents and in mice intestinal colonization. However, the local and transient sensitivity observed in vivo, and the in vitro adaptations suggest that several detergent-resistance mechanisms operate in S. typhimurium.  相似文献   

18.
19.
The biochemical mechanisms of resistance to fusidic acid in Staphylococcus aureus were investigated. Organisms possessing plasmid genes for resistance showed a high basal level of resistance, but could be induced to higher levels after pre-incubation with fusidic acid. This induction occurred rapidly and probably did not depend on gene dosage effects. Mutants resistant to fusidic acid, obtained from plasmid-negative cultures, expressed resistance constitutively. Protein synthesis in cell-free extracts from staphylococci with plasmid-mediated resistance to fusidic acid was as sensitive to fusidic acid as was synthesis in preparations from sensitive organisms; whereas protein synthesis in preparations from a spontaneous fusidic acid resistant mutant was resistant to the antibiotic. None of the resistant strains caused detectable inactivation of fusidic acid and no new derivative of fusidic acid was found in culture extracts of plasmid-possessing organisms grown in the presence of radioactive antibiotic. Expression of plasmid-mediated resistance to fusidic acid was associated with a decrease in the molar ratio of phosphatidylglycerol to lysylphosphatidylglycerol, but the cardiolipin content remained constant.  相似文献   

20.
Many fungi undergo a morphological transition to filamentous growth in response to limiting nutrient conditions. Constitutively elongated Saccharomyces cerevisiae mutants (elm) have been isolated; the ELM1 gene encodes a putative serine/threonine protein kinase. A novel allele, elm1-15, has been isolated in an S288C-derived strain, which causes a pleiotropic phenotype, including media-specific growth effects, abnormal morphology and altered stress response, in cells that are auxotrophic for tryptophan. elm1-15 trp1 cells cannot use many nitrogen sources, are sensitive to amino acid analogues, have very low general amino acid permease activity and do not accumulate trehalose. In contrast, haploid elm1-15 TRP1 cells grow well in budding form on all media, are stress resistant and overaccumulate trehalose. Several lines of evidence suggest that Elm1 acts on functions related to the RAS/cAMP pathway. Overexpression of Elm1 partially rescues the ts phenotype of cdc25 and cyr1 mutants. Deletion of ELM1 in low PKA activity mutants increased the severity of their phenotypes, and activation of Ras2 decreases the cell elongation phenotype of elm1 mutants. A 'signal integration' model for the complex relationship of Elm1 and the RAS/cAMP pathway in controlling morphogenesis in response to nutrients is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号