首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用X射线衍射仪、电子扫描和DTA差热分析等手段,研究了在Ar气氛保护下Al-ZnO粉高能球磨过程中发生的机械合金化反应,分析了不同球磨时间对粉体成分、形貌、热稳定性的影响及对生成Al2O3粒子的反应进程和颗粒大小的影响.结果表明,高能球磨是一种有效实现Al-ZnO固相置换反应的方法,经过30 h球磨后,Al-ZnO完全发生机械合金化反应,60h后可获得Zn包覆的纳米级的Al2O3颗粒,置换生成Zn的熔点降低到398℃.  相似文献   

2.
本文研究了高能球磨以及碳热还原反应加热过程中AlO3相结构的变化,及其对碳热还原反应活性的影响.不同相结构Al2O3碳热还原反应活性差别很大,γ-Al2O3是其中反应活性最好的.随着球磨时间的延长和加热温度的提高,粉末中发生了γ-Al2O3→α-Al2O3的转变,这一点对于降低碳热还原反应激活能是不利的.高能球磨20小时,Al2O3部分非晶化,而且有立方结构AlN生成,这两个现象属于首次报道.碳热还原反应加入的活性炭粉,能够抑制加热过程中的γ-Al2O3→α-Al2O3相变,有效地保证了粉末的反应活性.  相似文献   

3.
高能球磨固态扩散反应研究   总被引:28,自引:0,他引:28  
从扩散理论出发,结合结合Al-Cu合金高能球磨实验结果,分析了高能球磨过程中的扩散特点,提出了固态合成反应模型并进行了分析计算,结果表明,高能球磨过程中固态反应能否发生取决于体系在球磨过程中能量升高程度,而反应完成与否则受体系中的扩散过程控制,即受制于晶粒细化攻粉末碰撞温度。  相似文献   

4.
ZrO2—30mol?O2陶瓷粉末的高能球磨过程   总被引:1,自引:0,他引:1  
本文研究了ZrO2-30mol%CeO2陶瓷粉末的高能球磨过程,首先发现陶瓷材料在高能球磨过程中,有机械合金化(MA)发生。  相似文献   

5.
球磨促进碳热还原反应合成氮化铝研究   总被引:2,自引:0,他引:2  
研究了高能球磨氧化铝和细化和机械力化学作用及球磨对碳热还原反应合成氮化铝(AlN)的影响。结果表明:经高能球磨细化后的氧化铝(Al2O3),相对于原始粉末,反应生成的AlN 较大提高,且随着球磨时间增加,AlN生成量增大。用灰色关联分析方法比较了几种球磨效应对碳热还原反应的作用,发现粉末的晶粒尺雨与反应的关联度最大,表明球磨晶粒细化作用是球磨促进碳热还原反应的最主要原因。  相似文献   

6.
采用电弧熔炼的方法制备了具有一级磁晶相变Gd5Si1.8Ge1.8Si0.4母合金,然后在不同时间条件下对其进行高能球磨,并研究球磨时间对该磁热合金的磁性能及相组成的影响.粉末XRD结果显示球磨没有改变Gd5Si2Ge2相,但拓宽了相应的布拉格衍射峰,这表明球磨后的合金的晶粒尺寸较小.另外,球磨后的合金中形成了一些非晶相.随着晶粒尺寸和磁畴的减小,与母合金相比,希望其滞后现象减小.  相似文献   

7.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨,煅烧生成YAG粉体,再真空烧结制备高致密YAG陶瓷.采用DTA-TG对球磨Al-Y2O3粉体进行分析,采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征.实验表明:Al-Y2O3粉体在~569℃时,Al粉强烈氧化,并与Y2O3粉反应,600℃煅烧出现YAM相,随煅烧温度升高出现YAP相,1200℃煅烧生成YAG粉体.成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷,YAG陶瓷相对密度可达98.6%,晶粒生长均匀,晶粒尺寸为8~10μm.  相似文献   

8.
吴怡芳  冯勇  胡锐  闫果  许红亮  卢亚峰 《材料导报》2005,19(Z1):299-301
对化学计量比的Mg/B原始粉体进行高能球磨,通过扫描电镜SEM和能谱分析EDX对球磨前后的粉末进行观察,对球磨过程中复合粉末的组织形貌和成分分布的变化进行了研究.结果表明:随着球磨时间的延长,Mg粉明显细化,B粉在Mg粉中的均匀弥散分布程度很好.  相似文献   

9.
固相法制备纳米颗粒   总被引:2,自引:0,他引:2  
鄢程  李竟先 《材料导报》2000,(Z10):339-340
本文较全面地综合概述了纳米颗粒固相制备方法与工艺原理及特点。并且对于用途以及制备方法的工业可行性也作了一些探讨。  相似文献   

10.
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、差热分析(DTA)等方法研究了高能球磨及热处理对新型合金LaNi 5-41%Mg(质量分数)的组织形貌、结构变化及热稳定性能的影响.结果表明:经280r/min球磨250h后,LaNi 5-41%Mg样品由镧、镁和镍等非晶以及微量的晶体Mg和Mg2Ni组成;所得的粉末形状大多数为规则的近球形或球形,颗粒直径为0.1~15.2μm,其中87%的颗粒直径为0.1~2μm.球磨样品经763K保温35d后,得到热稳定性较好的由纳米Mg2NiLa,Mg2Ni,Mg17La2三相组成的合金,其平均晶粒直径为26.9nm.  相似文献   

11.
SCR烟气脱硝催化剂V_2O_5-WO_3/TiO_2性能研究   总被引:1,自引:0,他引:1  
通过浸渍法制备了V2O5-WO3/TiO2催化剂,考察催化剂在SCR反应中的脱硝性能.结果表明,WO3的引入扩宽了催化剂的反应窗口,随着WO3含量增加,脱硝率略有上升,特别是在高温阶段.当WO3含量为8%时,催化剂具有最佳效果,在250~400℃范围内,NO脱除率都能达到95%以上,450℃时,脱硝率仍能达到89.19%.此外,进一步考察了空速值、氧浓度、氨氮比、NO初始浓度等不同条件下对催化剂活性的影响.  相似文献   

12.
本研究制备了以V2O5、P2O5、B2O3为基体,掺杂Na2O、Li2O、CuO、Sb2O3、B2O3为辅助原料的低熔点钒磷铋系玻璃。研究了氧化物的添加对钒磷铋系玻璃的骨架网络结构、特征温度、热膨胀系数和化学稳定性的影响。实验结果表明:CuO的添加使钒磷铋系玻璃特征温度明显下降,而Na2O、Li2O、Sb2O3和B2O3的添加使钒磷铋系玻璃特征温度均有不同程度的上升。添加B2O3能够大幅度降低钒磷铋系玻璃的热膨胀系数。氧化物对钒磷铋系玻璃的耐水性影响程度为:CuO>B2O3>Sb2O3>Na2O>Li2O;耐酸性影响程度为:B2O3>CuO>Sb2O3>Na2O>Li2O;耐碱性的影响程度为:Sb2O3>Na2O>CuO>B2O3≈Li2O。配比为5%Na2O,5%Li2O,3.5%CuO,10%Sb2O3和5%B2O3制得的钒磷铋系玻璃,热膨胀系数更接近于氧化铝陶瓷基板,拥有较高的耐腐蚀性,能够用于电子浆料中。  相似文献   

13.
以工业偏钛酸为载体原料,采用超声浸渍法制备V2O5/TiO2催化剂.用XRD、XPS、FT-IR、UV-VIS等分析方法研究了热处理过程对催化剂组成和性能的影响,结果表明:随焙烧温度的升高和焙烧时间的延长催化剂的比表面积和孔径均减小,焙烧气氛对V2O5/TiO2催化剂中钒氧物种的存在形式和的光催化活性具有极其重要的影响,光响应性能与光催化性能不完全一致,将钒负载量为0.1%,在含水蒸气的空气中500℃焙烧4.5h制得的催化剂用于光催化降解10mg/L的亚甲基蓝溶液,在功率为4W的黑光灯照射下1.5h,亚甲基蓝的降解率达94.1%.  相似文献   

14.
高能球磨法合成纳米晶NiZn铁氧体的结构和磁性   总被引:4,自引:0,他引:4  
报告了作者利用机械球磨方法成功制备纳米晶NiZn铁氧体软磁材料的实验结果。实验样品具有很好的单相结构,所形成材料典型晶粒尺度为10~50nm。结合纯Fe3O4球磨样品,初步估算其样品的合成效率大约为27%~44%,这一结果可利用两步合成及中间纳米颗粒的高活性给予理解。对本实验利用球磨方法直接获得的NiZn铁氧体样品表现出较低的磁化强度σm和较大的矫顽力Hc,其典型值为43Am2kg-1和377×103(4π)-1A/m。从实用化角度而言,必要的热处理将是必要的。实验进一步证明,除了传统的机械合金化制备纳米晶软磁合金材料以外,利用高能球磨制备纳米晶NiZn软磁铁氧体也将是一种有效可行的新方法。  相似文献   

15.
还原五氧化二钒制备二氧化钒粉末   总被引:2,自引:0,他引:2  
本文采用碳热法还原V2O5制备钒的低价氧化物VO2.用XRD分析生成物的相结构,用DSC/TGA的分析结果推测反应历程.结果表明:反应经历了674°C-710°C期间生成V6O13和710°C以上完全形成VO2的过程.将VO2与LAS玻璃复合烧结成陶瓷,对其进行阻温测试,结果表明:在室温至100°C间复合陶瓷电阻急骤下降,这是由VO2的半导体-金属相变效应引起的.  相似文献   

16.
采用溶胶-凝胶技术制备溶胶,结合提拉镀膜方法,通过溶剂替换工艺在常压下制备出了纳米多孔结构的V2O5气凝胶薄膜.使用XRD、椭偏仪、XPS分别测试薄膜的晶态结构、折射率、表面成分,采用标准三电极法研究了薄膜的电化学伏安循环特性以及充放电性质.结果表明,经过溶剂替换薄膜孔隙率得到增加,比容量得到显著提高,可逆性也得到了改善;热处理使薄膜致密,孔隙率降低,样品在300℃热处理后V5+的含量增加,比容量有所提高.  相似文献   

17.
α-Al2O3 based compounds have large crystals and it is very difficult to reduce the crystallite size because they are very stable and hard. One way of reducing the crystallite size of the materials is by using high-energy ball milling method. Pure and single-phase micron-sized α-Al2−xCrxO3 (x = 0.1, 0.2, 0.3) materials were successfully obtained via self-propagating combustion method. These materials were then subjected to a simple milling process from their microcrystalline powders. Comparisons between the micron-sized and milled samples in terms of their phase, structure, morphology and crystallite size were discussed. The XRD results reveal that all the milled samples were pure with no impurity or other phases present. Structural parameters are extracted via the Rietveld method, revealing that the cell constant, a, of the milled samples is higher than that of the micron-sized materials by 0.09 % to 0.11 %, resulting in a 0.28 % to 0.39 % increase in cell volume. FESEM results show a gradual decrease in crystallite size with increased milling time. Notably, the method successfully reduces the crystallite size without changing the phase of the materials and preserving the stoichiometry of the Al2−xCrxO3 materials which may offer improved properties in various applications.  相似文献   

18.
蔡羽  赵胜利  文九巴  陈海云 《材料导报》2006,20(Z1):288-290
全固态薄膜锂离子电池由于具有能量密度高、循环性能和安全性能好等优点已成为目前研究的热点.其中,V2O5薄膜是锂离子电池中一种备受重视的阴极材料.对V2O5薄膜的离子扩散系数以及结构特点做了简单介绍,重点评述了V2O5薄膜电极制备和电化学性能研究方面的发展近况,并对今后的发展方向进行了展望.  相似文献   

19.
刘清才  席文昌  杨剑  贺媛媛  黄锐  洪燕 《功能材料》2013,44(11):1624-1628
采用固液混合方法,利用改性堇青石制备蜂窝式V2O5-WO3/Cordierite-TiO2脱硝催化剂,通过扫描电子显微镜(SEM)、热分析(DSC-TG)、X射线衍射分析仪(XRD)、模拟烟气分析装置和磨损装置,考察其表面形貌、热稳定性、晶相变化、耐磨损性能和催化剂活性。结果表明,改性堇青石的引入,制备的催化剂具有表面微气孔多和热稳定性好的特点,700℃煅烧后,V2O5和WO3的仍呈现无定形态或微晶状态;引入10%的堇青石制备的催化剂磨损率低,尤其在250~460℃反应时,脱硝率可以保持在80%以上。  相似文献   

20.
用高能球磨工艺制备Al-50Si合金粉末,将粉末经冷压、烧结、热压等工艺制备出Al-50Si合金块体材料,对球磨粉末和块体样品进行了显微组织观察、EDS分析和XRD分析,测定了块体样品的密度、硬度和热扩散系数.结果表明:高能球磨后Al-50Si合金粉末的硅粒子明显细化,其尺寸分布为1-15μm;在烧结过程中块体样品的硅粒子长大,其尺寸增大到5-30μm;Al-50Si合金块体材料具有较高的密度和硬度,其室温热扩散系数为55mm2·s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号