首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity, current-voltage characteristics and morphology of carbon black–filled immiscible blends of poly(vinylidene fluoride)(PVDF) and high density polyethylene (HDPF) were investigated. Carbon black (CB) had stronger affinity to HDPE than to PVDF, resulting in its selective localization in the HDPE phase. The CB content and PVDF/HDPE volume ratio were the two main factors influencing the electrical conductivity, current-voltage characteristics, and morphology. At a fixed PVDF/HDPE volume ratio of 1/1, a percolation threshold of 0.037 volume fraction of CB was observed, and that value was much lower than that for conventional CB-filled polymer composites. At a fixed CB content (10 wt% CB), a maximum electrical conductivity was observed at a PVDF/HDPE volume ratio of 2.75. An increase in CB content in the composites with a fixed PVDF/HDPE volume ratio (1/1) and an increase in PVDF content in composites with a fixed CB content (10 wt%) greatly decreased the domain size of the PVDF phase. A positive-temperature-coefficient effect was used to determine the location of CB in the blends.  相似文献   

2.
研究了炭黑(CB)含量对LDPE、HDPE、PA1010电阻率的影响,以及LDPE/CB、HDPE/CB、PA101/CB复合体系的电阻-温度特性,发现PA101/CB体系的正温度系数(PTC)转变温度较高,但与HDP/CB体系相比,其PTC强度却很低,不适于制备PTC材料.HDPE/CB体系在160℃附近具有较高的PTC效应,且辐射交联可消除其负温度系数(NTC)效应,容易加工成型,是制备低温区PTC材料的较好体系.  相似文献   

3.
利用传统的熔融 混合方法制备碳黑填充的聚丙烯 (PP) /超高分子量聚乙烯 (UHMWPE)复合物。当PP/UHMWPE混合比大于 3 / 7,碳黑填充PP/UHMWPE复合物的PTC和NTC效应类似于碳黑填充的纯净PP聚合物。然而当重量比等于或小于 3 / 7时 ,复合物所表现的PTC效应非常相似于碳黑填充的纯净的UHMWPE聚合物。在复合物中应用粘度非常高的聚合物作为一种组分可以有效消除NTC效应  相似文献   

4.
炭黑粒子偶联处理的HDPE复合材料PTC性能研究   总被引:1,自引:0,他引:1  
罗延龄 《炭素》2001,(3):16-22
研究了以HDPE为基体,工业炭黑(CB)为导电粒子的高分子复合材料的PTC(正温度系数)导电行为。考察了炭黑及偶联剂种类、用量对高分子PTC导电材料性能的影响,并探讨了偶联接枝机理,从理论上对改性效果进行了分析。结果表明,对炭黑,尤其是槽法炭黑 表面处理可显著提高复合材料的电导率及减小NTC(负温度系数)效应;钛酸酯偶联剂具有最佳改性效果,可明显改善炭黑粒子分散状态,增强材料的PTC效应,其最佳用量为1%质量份。  相似文献   

5.
UHMWPE对有机PTC复合材料的稳定作用   总被引:2,自引:1,他引:1  
利用传统的熔融-混合方法制备碳黑填充的聚丙烯(PP)/超高分子质量聚乙烯(UHMWPE)复合材料,当P/UHMWPE质量比大于3/7时,碳黑填充PP/UHMWPE复合物的正温度系数(PTC)和负温度系数(NTC)效应类似于碳黑填充的纯PP聚合物,但当质量比等于或小于3/7时,复合物所表现的PTC效应非常相似于碳黑填充充的纯UHMWPE聚合物,在复合物中采用粘度非常高的聚合物作为一种组分可以有效消除NTC效应。  相似文献   

6.
偶联处理对HDPE/炭黑复合材料PTC性能的影响   总被引:11,自引:0,他引:11  
以HDPE/工业炭黑(CB)复合材料为研究对象,考察了炭黑及偶联剂种类、用量对高分子PTC(正温度系数)导电材料性能的影响,并探讨了偶联接技机理,从理论上对改性效果进行了分析。结果表明,对炭黑(尤其是槽法炭黑)进行表面处理可显著提高复合材料的电导率,减小NTC(负温度系数)效应;钛酸配偶联剂具有最佳改性效果,可明显改善炭黑粒子分散状态,增强材料的PTC效应,其最佳用量为1%。  相似文献   

7.
The relationship between morphology and resistivity–temperature behavior of carbon black (CB) filled isotactic polypropylene/high density polyethylene (iPP/HDPE) composites was investigated. The positive temperature coefficient intensity for all composites studied in this paper was lower than one and the negative temperature coefficient (NTC) effect was obvious. The factors influencing resistivity–temperature behavior include the CB contents, types of the polymer matrices and their composition, which determine the phase morphology and thus the conductive network. The types of iPP and HDPE influenced the NTC effect, while the morphology of the composites mainly influenced the initial volume resistivity of the composites.  相似文献   

8.
Composites of high‐density polyethylene (HDPE) with different kinds of carbon black (CB) were prepared through melt blending. The influence of the CB structure on the stability and efficiency of the conductive network in HDPE/CB composites were mainly investigated. Scanning electron microscopy was used to observe the morphology of the CB primary aggregates. The relationship between the temperature‐resistivity behaviors of the composites and the crystallization behaviors of the matrix were also investigated. High‐structure CB built an effective conductive network at a low filler content compared to the low‐structure one because of its branched morphology. Therefore, the composite containing high‐structure CB revealed a lower percolation threshold. The composite containing low‐structure CB obtained a stronger positive temperature coefficient (PTC) intensity because the cluster network was fragile and easily damaged during matrix melting. The reproducibility of the results of PTC effect of the composite containing high‐structure CB was better than that of the composite containing a low‐structure one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The positive temperature coefficient (PTC) effects of carbon black (CB)‐filled semicrystalline and amorphous ethylene–propylene–diene terpolymer (EPDM) composites were studied. The semicrystalline EPDM/CB composite exhibited a low PTC effect followed by a pronounced negative temperature coefficient (NTC) effect, while the amorphous EPDM/CB composite exhibited only an NTC effect. By the effect of γ‐ray irradiation, not only was the NTC effect of the composites eliminated, but also a high PTC effect appeared. The PTC intensity reached as high as six orders of magnitude even for an amorphous EPDM/CB composite and the PTC transition temperature decreased with the irradiation dose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1571–1574, 2001  相似文献   

10.
The sensitive effect of weight ratio of the high‐density polyethylene (HDPE)/ethylene‐vinylacetate copolymer (EVA) on the electrical properties of HDPE/EVA/carbon black (CB) composites was investigated. With the EVA content increasing from 0 wt % to 100 wt %, an obvious change of positive temperature coefficient (PTC) curve was observed, and a U‐shaped insulator‐conductor‐insulator transition in HDPE/EVA/CB composites with a CB concentration nearby the percolation threshold was found. The selective location of CB particles in HDPE/EVA blend was analyzed by means of theoretical method and scanning electron micrograph (SEM) in order to explain the U‐shaped insulator‐conductor‐insulator transition, a phenomenon different from double percolation in this composite. The first significant change of the resistivity, an insulator‐conductor transition, occurred when the conductive networks diffused into the whole matrix due to the forming of the conductive networks and the continuous EVA phase. The second time significant change of the resistivity, a conductor‐insulator transition, appeared when the amorphous phase is too large for CB particles to form the conductive networks throughout the whole matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
This paper describes the structure and electrical performance of PTC/NTC (positive temperature coefficient/negative temperature coefficient) effects and their reproducibility upon healing/cooling cycles. The following three‐component blends were studied: PVDF/UHMWPE/CB, PVDF/XL‐UHMWPE/CB and γ‐irradiated compression molded plaques of these blends. Carbon black (CB) particles are attracted to the UHMWPE (ultra high molecular weight polyethylene) and XL (cross‐linked)UHMWPE particles, which constitute the dispersed phase in the PVDF (polyvinylidene fluoride) matrix, but practically cannot or only very slightly penetrate them because of their extremely high viscosity. A double‐PTC effect was exhibited by all unirradiated samples. Irradiation of compression molded PVDF/UHMWPE/CB plaques does not add to their already outstanding reproducibility, and it results In a wide single‐PTC effect. Irradiation of compression molded PVDF/XL‐UHMV/PE/CB plaque, slabilizes their structure upon heating/cooling cycles and thus makes them reproducible PTC/NTC materials, still exhibiting a double‐PTC effect. The carbon black concentrations studied in this report are extremely low (< 2 phr CB) in comparison to other literature reports.  相似文献   

12.
以炭黑(CB)粒子为导电填料,乙烯-乙酸乙烯共聚物(EVA)和低密度聚乙烯(LDPE)为基体树脂,在HAAKE转矩流变仪中制备了EVA/LDPE/CB导电复合材料,研究了CB粒子的分散形态、共混体系相形态以及其与EVA/LDPE/CB共混体系导电性能的关系。通过DSC、DMA、SEM、溶剂溶解等方法考察了EVA/LDPE两相体系随着EVA含量的变化引起的相转变情况,同时也考察了CB在EVA/LDPE共混体系中的选择性分散情况。  相似文献   

13.
Percolation, positive temperature coefficient (PTC), and negative temperature co-efficient (NTC) in carbon black-filled HDPE composites, were studied by measuring AC electrical properties. An equivalent single parallel circuit model, which consists of a resistor and a capacitor, was adapted to explain the distribution of carbon black in composite. The electrical conductivity and admittance and phase angle were characterized by measuring the distribution of carbon black aggregates with an impedance analyzer. It was concluded that PTC is due to the deagglomeration or the breakage of the conduction networks caused by thermal expansion and/or crystalline melting of the matrix polymer, and NTC is due to the reagglomeration of the network of carbon black aggregates.  相似文献   

14.
Conductive polymer composites were prepared by sintering a mixture of ultrahigh molecular weight polyethylene (UHMWPE) powder and carbon black. Two processing parameters—time and temperature—were shown to have a notable effect on the resistivity of the composites. The relationships between the processing parameters and morphology were studied using optical microscopy and transmission electron microscopy (TEM). The results of the optical microscopy studies indicate that the carbon black is distributed in the interfacial regions between the UHMWPE particles. The dimension of the carbon black channels increases with the carbon black concentration. TEM micrographs show that a high degree of intermixing between the carbon black and the polymer occurs at higher temperatures and longer processing times, resulting in higher resistivities. A positive temperature coefficient (PTC) effect was observed for these materials. A mechanism for the PTC effect in this system is proposed. The magnitude of the PTC effect is found to be inversely proportional to the dimension of the carbon black channels in the composites. The dimension is directly related to the carbon black concentration. The PTC effect is a result of the polymer volume expansion caused by melting of the crystallites. A large PTC effect is observed for the composites with a low carbon black concentration and vice versa. No negative temperature effect (NTC) is observed at temperatures substantially above the melting point of the polymer.  相似文献   

15.
The electrical‐resistivity/temperature behaviors of low‐density polyethylene (LDPE)/carbon black (CB) composites irradiated with 60Co γ rays were studied. The experimental results showed that the irradiated composites could be separated into insoluble crosslinking networks with CB (gel) and soluble components (sol) by solvent‐extraction techniques. When the sol of an irradiated LDPE/CB composite was extracted, the electrical conductivity of the system increased. The positive‐temperature‐coefficient (PTC) and negative‐temperature‐coefficient (NTC) intensities of the gels of the irradiated composites became extremely small and independent of the radiation dose. The sols and gels of the irradiated LDPE/CB composites, which had different thermal behaviors, played important roles in the appearances of the PTC and NTC effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 700–704, 2005  相似文献   

16.
《Polymer Composites》2017,38(7):1462-1473
Poly(ethylene‐co‐vinyl alcohol)/carbon black (EVOH/CB) composites were prepared by a solvent‐casting saponification (‐D) and precipitation saponification (‐P) methods with a poly(ethylene‐co‐vinyl acetate)/CB (EVA/CB) toluene suspension. The effects of the CB content and saponification time on the morphology, electrical resistivity, thermal, and mechanical properties of EVA/CB composites were examined. The volume resistivity (ρ v) of the EVA/CB‐D and EVA/CB‐P samples decreased significantly with increasing CB content and the percolation threshold of such composites was determined about 10 wt%. At 10 wt% of CB content, the ρ v of EVA/CB‐D composite decreased significantly with the saponification time, whereas ρ v of EVA/CB‐P composites did not change. As the saponification time increased, EVA/CB25wt% composites form cavity structure which CB is usually located in oval cavities larger than the particles themselves. This oval cavity structure almost resembles extruded high‐density polyethylene (HDPE)/CB composites. The morphology and PTC behavior of prepared composites were compared with those of HDPE/CB and the mechanism of PTC and NTC effects was discussed. POLYM. COMPOS., 38:1462–1473, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
研究了增容剂马来酸酐接枝聚乙烯(PE-g-MAH)、乙烯-醋酸乙烯酯(EVA)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)对高密度聚乙烯(PE-HD)/聚碳酸酯(PC)/炭黑(CB)复合材料导电性能的影响。结果表明,加入增容剂有利于增强复合材料的正温度系数(PTC)效应,其中嵌段共聚物SBS对复合材料PTC效应的改善效果相对较好,SBS含量为4%(质量分数,下同)时,复合材料的PTC强度最高,比未添加时提高了14.3%;接枝共聚物PE-g-MAH的加入对复合材料PTC效应的增强效果弱于SBS;无规共聚物EVA的加入对负温度系数(NTC)现象具有明显的抑制作用,使复合材料的NTC强度从0.3下降至0.08。  相似文献   

18.
不同炭黑填充的PVC/EPDM复合NTC材料电性能的研究   总被引:1,自引:0,他引:1  
首先研究了特导炭黑(HG-1P)和乙炔炭黑(ACET)填充聚氯乙烯(PVC)单组分复合材料的逾渗行为和阻温特性:特导炭黑导电性较好,较少的填充量就能达到较低的室温电阻率,在升温过程中表现出稳定的NTC效应;乙炔炭黑导电性能偏差,达到相同的导电性需要更多填充量,在升温过程中先是出现弱的PTC效应,继而出现NTC效应。然后,引入三元乙丙橡胶(EPDM)、乙丙橡胶(EPR)作为第二组分,EVA作为第三组分,发现多组分复合材料电阻降低,阻温曲线表现出一些新的特征。  相似文献   

19.
炭黑用环氧化天然橡胶(ENR)胶乳处理后,与高密度聚乙烯混炼,制得导电复合材料,对复合材料的电性能、力学性能和形态进行了研究。结果表明,ENR使导电复合材料的渗逾区间和转折温度等有所改变,可使材料的PTC强度提高1-2个数量级;同时力学性能也有改善。SEM观察证明,ENR有利于炭黑的分散性,并使导电复合材料中炭黑和基体间的相互作用明显增大,对高填充的材料效果尤为显著。  相似文献   

20.
Selective localization of carbon black (CB) at the interface of polymer blends was achieved by the method that poly(styrene-co-maleic anhydride) (SMA) was first reacted with CB, and then blended with nylon6/polystyrene (PA6/PS). In the PA6/PS blends, CB was localized in PA6 phase and typical double percolation was exhibited. In the PA6/PS/(SMA–CB) blends, TEM results showed that CB particles were induced by SMA to localize at the interface, resulting in the especial interface morphology fabricated by SMA and CB. The especial interface morphology of PA6/PS/(SMA–CB) caused distinct triple percolation behavior and very low percolation threshold. The positive temperature coefficient (PTC) intensity of PA6/PS/(SMA–CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient (NTC) effect was eliminated. The elimination of NTC effect was arisen from the especial interface morphology. A stronger PTC intensity was attributed to the low percolation threshold and the morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号