首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polymer blends of poly(ethylene terephthalate) (PET) and a liquid crystalline polymer (LCP) [random copolymers of the poly(ethylene telephthalate) and poly (hydroxybenzoic acid)] were prepared by using a twin-screw extruder. Strands were extruded from a capillary die. Extruded stands were stretched in an oven at 80°C. DSC and SEM were employed to investigate the structural properties of the strands. Mechanical properties of the strands were evaluated by a sonic propagation method. DSC investigation suggested that LCP phases may act as a nucleating agent of PET and the orientation-induced crystallization of PET was accelerated by the presence of LCP. An SEM micrograph shows that the LCP phases formed finely spherical domains with a diameter of 0.1–1.0 μm in the PET matrix and large parts of LCP spherical droplets were deformed to fibrils. In the case of unstretched strands, sonic moduli increased linearly with increasing LCP content, because PET was reinforced by LCP fibrils as in the case of glass fiber-reinforced PET. The degree of crys-tallization of PET also increased with increasing LCP contents. In the case of stretched strands, sonic moduli increased with an increasing stretching ratio due to the orientation-induced crystallization of PET. A larger increasing of the sonic modulus was shown in LCP-containing strands in the regions of a low stretching ratio (1–5), since the orientation-induced crystallization of PET was accelerated by the presence of LCP phases. © 1996 John Wiley & Sons. Inc.  相似文献   

2.
Structure–property relationships were investigated for blends of a polyester-type thermotropic liquid crystalline polymer (LCP) with polyethylene terephthalate (PET), polypropylene (PP), and polyphenylene sulfide (PPS). The polymers were melt blended in a twin-screw extruder and the blends were extruded to strands of different draw ratios. Tensile properties of the blends were determined as a function of LCP content and draw ratio and compared with the results of morphological and rheological analyses. In general, the strength and stiffness of the matrix polymers were improved with increasing LCP content and draw ratio. At a draw ratio of 11, the blends of PET/30 wt % LCP exhibited a tensile strength about three times and an elastic modulus nearly four times that of pure PET. All blends exhibited a skin/core morphology with thin fibrils in the skin region. The formation and the sizes of the fibril-like LCP domains in the matrices were found to depend on LCP content and the viscosity ratio of the blend components.  相似文献   

3.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

4.
Blends of a poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared in a twin-screw extruder. Specimens for thermal properties were investigated by means of an instron capillary rheometer (ICR) and scanning electron microscopy (SEM). The blend viscosity showed a minimum at 10 wt% of LCP and increased with increasing LCP content above 10 wt% of LCP. Above 50% of LCP and at higher shear rate, phase inversion occured and the blend morphology was fibrous and similar to pure LCP. The ultimate fibrillar structure of LCP phase appeared to be closely related to the extrusion temperature. By employing a suitable deformation history, the LCP phase may be elongated and oriented such that a microfibrillar morphology can be retained in the solid state. Thermal properties of the LCP/PEN blends were studied using DSC and a Rheovibron viscoelastomer. These blends were shown to be incompatible in the entire range of the LCP content. For the blends, the Tg and Tm were unchanged. The half time of crystallization for the LCP/PEN blends decreased with increasing LCP content. Therefore, the LCP acted as a nucleating agent for the crystallization of PEN. The dimensional and thermal stability of the blends were increased with increasing LCP content. In studies of dynamic mechanical properties, the storage modulus (E′) was improved with increasing LCP content and synergistic effects were observed at 70 wt% of LCP content. The storage modulus for the LCP/PEN 70/30 blend is twice that of PEN matrix and exceeded pure LCP.  相似文献   

5.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

6.
Blends of an engineering thermoplastic, poly(ethylene terephthalate) (PET), and two liquid crystalline polymers (LCPs) viz., copolyesters of PET and parahydrox-ybenzoic acid (PHB) in 40/60 mole percent (LCP60) and in 20/80 mole percent (LCP80) were prepared. A blend of LCP60 and LCP80 in 50/50 weight percent (LCP60-80) was blended with PET. Both flat films and rods were extruded and their properties examined. The morphology of the films investigated using Scanning Electron Microscopy (SEM) revealed that the LCP phase remained as dispersed droplets in the PET matrix. In spite of the lack of fibrillation in these films, the mechanical properties were enhanced to some extent with a maximum at 10 weight percent of the LCP phase. However, in the case of the rods thin fibrils of the LCP phase of the order of 1 μm in diameter were observed provided the composition of the LCP was 20 weight percent or greater. This success In achieving fibrillation is through to be due to the extensional flow fields present at the entrance of the capillary die and the fact that a short L/D ratio die was used. Differential Scanning Calorimetry (DSC) thermograms of the extruded films indicated that the LCP phase may act as a nucleating agent for the crystallization of PET. Rheology of the blends revealed that the complex viscosity of the blends is not much different from that of pure PET. This is attributed to the partial miscibility of the two components. Based on the DSC results and residence times in the extruder, it is concluded that no significant transesterification reactions appear to have: taken place in the blends. The rheology is studied further with respect to the cooling behavior of the pure components and factors important to the fibrillation of the LCP phase and the formation of in-situ reinforced composites are discussed.  相似文献   

7.
Binary blends of a liquid crystalline polymer (LCP) and poly(ethylene 2,6-naphthalate) (PEN) were melt blended and injection molded. The mechanical properties were studied as a function of LCP content. Both the ultimate tensile strength and Young's modulus are higher than the theoretical values predicted by the rule of mixtures and they display a synergistic behavior at 70 wt % LCP content. However, the tensile strength decreases with LCP content and Young's modulus remained unchanged at lower LCP contents (10 to 30 wt %). The poor mechanical property is attributed to the immiscibility between PEN and LCP and the fibrillation behavior of LCP as revealed by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) results. However, LCP and PEN are found to be partially miscible at higher LCP content, ascertained by DSC and dynamic mechanical analysis (DMA). This is attributed to the transesterification reaction between PEN and PET moiety in the LCP molecules. SEM micrographs reveal a skin/core morphology in the tensile bars, that is, the LCP is better oriented in the skin than in the core region. At lower LCP content, the dispersed LCP phase is spherical in the core and ellipsoidal in the skin, with long axes oriented in the flow direction. DSC studies show that the crystallization rate is significantly enhanced by the presence of LCP up to 50 wt %, where the LCP acts as a nucleating agent for PEN crystallization. The melting temperature decreases with LCP content, probably as a result of imperfect crystals formed in the presence of LCP heterogeneous nucleating centers and the increasing miscibility between LCP and PEN. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 477–488, 2001  相似文献   

8.
Poly(p-hydroxybenzoic acid) (PHB)–poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN), and PET were mechanically blended to pursue the liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content abruptly decreased above 40 wt % of PHB content because the melt viscosity of ternary blends dropped. Glass transition temperature and melting temperature of blends increased with increasing PHB content. The tensile strength and initial modulus of blends were low at 10 and 20 wt % PHB. However, the blends containing above 30 wt % PHB were improved with increasing PHB content due to the formation of fibrous structure. The blend of 20 wt % PHB formed irregularly dispersed spherical domains, and the blends of 30–40 wt % PHB showed LCP ellipsoidal domains and fibrils. In the polarized optical photographs, the blends of 40 wt % PHB showed pseudo LC phases. The degree of transesterification and randomness of blends were increased with blending time. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1065–1073, 1998  相似文献   

9.
To improve the barrier properties of poly(ethylene terephthalate) (PET), PET/poly(ethylene 2,6‐naphthalate) (PEN) blends with different concentrations of PEN were prepared and were then processed into biaxially oriented PET/PEN films. The air permeability of bioriented films of pure PET, pure PEN, and PET/PEN blends were tested by the differential pressure method. The morphology of the blends was studied by scanning electron microscopy (SEM) observation of the impact fracture surfaces of extruded PET/PEN samples, and the morphology of the films was also investigated by SEM. The results of the study indicated that PEN could effectively improve the barrier properties of PET, and the barrier properties of the PET/PEN blends improved with increasing PEN concentration. When the PEN concentration was equal to or less than 30%, as in this study, the PET/PEN blends were phase‐separated; that is, PET formed the continuous phase, whereas PEN formed a dispersed phase of particles, and the interface was firmly integrated because of transesterification. After the PET/PEN blends were bioriented, the PET matrix contained a PEN microstructure consisting of parallel and extended, separate layers. This multilayer microstructure was characterized by microcontinuity, which resulted in improved barrier properties because air permeation was delayed as the air had to detour around the PEN layer structure. At a constant PEN concentration, the more extended the PEN layers were, the better the barrier properties were of the PET/PEN blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1309–1316, 2006  相似文献   

10.
This paper is in continuation of our previous paper on Poly(etherether ketone)-liquid crystal polymer (PEEK-LCP) composites. Rheological, morphological, and mechanical properties of polyetherether ketone and a thermotropic liquid crystalline polymer based on hydroxybenzoic acid/hydroxynaphthoic acid have been reported. Addition of LCP resulted in a marked reduction of viscosity and improved processability. Tensile properties improved with increase in LCP concentration. Synergistic effects have been observed at certain LCP concentrations. The elongation at break was found to reduce drastically above 10% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. Morphology of injection molded and capillary extruded samples of the blends showed that the in-situ formed fibrous LCP phase was preserved in a solidified form. The improvement in tensile properties is likely due to the reinforcement of the PEEK matrix by the fibrous LCP phase as observed by scanning electron microscopy. A distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties measured in the flow and transverse direction indicated an increase in the degree of anisotropy with an increase in LCP content.  相似文献   

11.
The in situ composites based on poly(ethylene 2,6‐naphthalate) (PEN) and liquid crystalline polymer (LCP) were investigated in terms of thermal, rheological, and mechanical properties, and morphology. Inclusion of LCP enhanced the crystallization rate and tensile modulus of the PEN matrix, although it decreased the tensile strength in the PEN‐rich phase. The orientation effect of this blend system was composition and spin draw ratio dependent, which was examined by Instron tensile test. Further, the addition of dibutyltindilaurate (DBTDL) as a reaction catalyst was found to increase the viscosity of the blends, enhance its adhesion between the dispersed LCP phases and matrix, and led to an increase of mechanical properties of two immiscible blends. Hence DBTDL is helpful in producing a reactive compatibilizer by reactive extrusion at the interface of this LCP reinforced polyester blend system. The optimum catalyst amount turned out to be about 500 ppm, when the reaction proceeded in the 75/25 PEN/LCP blend system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2448–2456, 1999  相似文献   

12.
Liquid crystalline polymers (LCPs) are known for their high performance properties. However, owing to their high cost, research efforts are much oriented to their use as reinforcements for different thermoplastics. In this study, we investigated the morphology, mechanical and dynamic rheological properties of blends of a 60/40 para hydroxybenzoic acid–ethylene terephthalate copolyester LCP (PHB/PET) with poly(butylene terephthalate) (PBT), poly(hexamethylene terphthalate) (PHMT), and polycarbonate (PC). Addition of up to 30 wt% of LCP to the different thermoplastics was performed in a Haake Rheomix mixer at 300°C. The dynamic rheological properties of the blends showed significant changes upon the addition of LCP, but no improvement in the mechanical properties was observed. The rheological properties of the blends below the nematic transition temperature of the LCP (210°C) were similar to those of solid filled thermoplastics. At 270°C, at which the LCP is in the nematic phase, the viscosity of LCP blends with PC blends decreased, whereas that obtained with PBT blends was increased. This is interpreted as being due to the differences in viscosity and interfacial tension between the components and to a possible reaction between the LCP and the thermoplastics.  相似文献   

13.
The mechanical, morphological and thermal properties of the binary and ternary blends of a fluorocarbon elastomer (FKM), an acrylic elastomer (ACM) and a liquid crystalline polymer (LCP) were investigated. The ternary blends were prepared by varying the amount of the LCP but fixing the ratio of the FKM and ACM. Addition of a third component, a polyacrylic rubber which interacted with the LCP, facilitated the structural development of the LCP phase by acting at the interface. The mechanical properties of the ternary blends were substantially improved because of both the fibril generation and adhesion of rubber particles on the LCP fibrils, which were attributed to the ACM interaction. Morphological investigations suggest that the fine fibrillation of the LCP domains is more apparent in the ternary blends than in the binary blends of FKM and LCP prepared under the same processing conditions. Thermogravimetric analysis (TGA) revealed an improved thermal stability of the FKM in the presence of the LCP for the binary blends, but a lower thermal stability for the ternary blends. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
This paper discusses the effect of melt drawing on the mechanical properties and morphology of liquid crystalline polymer (LCP) and thermoplastic polymer blends. Extruded fibers and films of LCP/polymer blends were melt drawn to develop uniaxial orientation of the dispersed LCP phase. The longitudinal modulus increased with increasing draw. The increase in modulus was due to higher aspect ratio of the LCP fibrils and improved molecular orientation of the LCP chains within the fibrils. Laminated composites were prepared using the extruded sheets as prepregs. The mechanical properties and the coefficient of thermal expansion (CTE) of the prepreg and the laminates agreed well with predictions from conventional composite lamination theories.  相似文献   

15.
The domain morphology and mechanical properties of fibers spun from blends of a thermotropic liquid crystalline polymer, Vectra A-900, and poly(ethylene terephthalate) (PET) have been studied across the entire composition range. The PET phase was removed by etching to reveal fibrillar LCP domains in the blends of all compositions. The 0.5μm fibril appeared to be the basic structural entity of the LCP domains. A primary effect of composition was the change from discontinuous fibrils when the composition was 35 and 60% by weight LCP to continuous fibrils when the composition was 85 and 96% LCP. This transition had major ramifications on the mechanical properties: the modulus increased abruptly between 60 and 85% LCP, and a change in the fracture mode from brittle fracture to a splitting mode was accompanied by an increase in fracture strength. Different models were required to describe the mechanical properties of the discontinuous and continuous fibril morphologies. Analytic models for short aligned fibers of Nielsen, and Kelly and Tyson were applicable when the LCP fibrils were discontinuous, while modulus and strength of blend fibers with continuous LCP fibrils were discribed by the rule of mixtures.  相似文献   

16.
Studies were conducted on the effects of shear rate, viscosity ratio and liquid crystalline polymer (LCP) content on the morphological and mechanical properties of polycarbonate (PC) and LCP blends. The LCP (LC5000) used was a thermotropic liquid crystalline polymer consisting of 80/20 of parahydroxybenzoic acid and poly(ethylene terephthalate) (PHB/PET). The viscosity ratio (viscosity of LCP: viscosity of matrix) was varied by using two processing temperatures. Due to the different sensitivity of materials to temperature, variation in the processing temperature will lead to varying viscosity of the components in the blends. Based on this principle, the processing temperature could be manipulated to provide a favourable viscosity ratio of below unity for fibre formation. To study the effect of shear rate, the flow rate of the blend and the mould thickness were varied. The shear rate has a significant effect on the fibrillation of the LCP phase. The effect was more prominent when the viscosity ratio was low and the matrix viscosity was high. At 5 wt% LCP, fibrillation did not occur even at low viscosity ratios and high shear rates. It was also observed that the LCP content must be sufficiently high to allow coalescence of the dispersed phase for subsequent fibrillation to occur. © 2002 Society of Chemical Industry  相似文献   

17.
Morphology and oxygen permeability studies were carried out for blends of poly(ethylene terephthalate), PET, and poly(ethylene 2,6-naphthalate), PEN, with poly(ethylene-co-vinyl alcohol), EVOH. PET/EVOH blends are seen as a possible substitute for poly(vinylidene chloride)-coated PET packaging films. The effects of several processing parameters such as draw temperature and draw ratio on blend morphology and barrier properties suggest that the morphology of the EVOH phase dictates to a large extent the oxygen permeabilities of these blends. The relationships between morphology and oxygen permeability and explained are explained by consideration of two-phase conduction models. The model of Fricke is found to be a good predictor of the barrier properties of the PET/EVOH system. The oxygen permeability of PET was reduced by a factor of 4.2 with the addition of 20 wt% EVOH and that of PEN by a factor of 2.7 with the addition of 15 wt% EVOH. Water vapor permeabilities and mechanical properties of PET and PEN were only slightly affected by the addition of 15 wt% EVOH.  相似文献   

18.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

19.
Extruded films of liquid crystalline polymer (LCP)/fluoropolymer blends were melt drawn to develop uniaxial orientation of a microfibrillar dispersed LCP phase. The anisotropy of the films increased with increasing draw and LCP content in the blend. Laminated composite plates were prepared using the extruded sheets as prepreg. The mechanical properties and coefficient of thermal expansion (CTE) of the prepreg and laminates agreed well with predictions from composite lamination theories. The potential for replacing glass fiber reinforced fluoropolymers with LCP/fluoropolymer blends in applications such as microwave circuit boards is discussed.  相似文献   

20.
Polypropylene was melt blended in a single screw extruder with thermo tropic Vectra B‐950 liquid crystalline polymer (copolyester amide) in different proportions in presence of 2% of EAA, ethylene‐acrylic acid copolymer (based on PP) as a compatibilizer. The mechanical properties of such compatibilized blends were evaluated and compared in respect of their Young's Modulii, Ultimate tensile strength, percent elongation at break, and toughness to those of Pure PP. The Morphology was studied by using a polarizing light microscope (PLM) and Scanning electron microscope (SEM). The Thermal characterization of these blends were carried out by differential scanning calorimeter (DSC).The mechanical properties under dynamic conditions of such compatibilized blends and pure PP were studied by dynamic mechanical analyzer (DMA). Mechanical analysis (Tensile properties) of the compatibilized blends displayed improvements in Modulii and ultimate tensile strength (UTS) of PP matrix with the incorporation of 2–10% of LCP incorporation. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had large influence on the mechanical properties. Differential scanning calorimeter (DSC) studies indicated no remarkable changes in the crystalline melting temperature of the blends with respect to that of pure PP. However, an increase in the softening range of the blends over that of PP was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号