共查询到18条相似文献,搜索用时 50 毫秒
1.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。 相似文献
2.
3.
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。 相似文献
4.
基于振动信号识别的断路器故障诊断研究 总被引:1,自引:0,他引:1
《高压电器》2017,(2)
文中搭建了真空断路器试验平台,实现了主轴卡涩等四类机械故障状态。通过将正常及故障状态下的实测振动信号进行经验模态分解,得到所需要的内禀模态函数(intrinsic made function,IMF),利用能量法求出包含主要故障特征信息的各内禀模态函数分量的能量总量。利用IMF分量能量总量作为特征向量,并以此作为支持向量机输入,分析对比了不同分类策略、核函数的分类时间和分类准确率,经实验分析选用一对其他分类策略并且核函数为径向基函数的分类效果最优,为研制完善的断路器故障诊断系统提供理论依据及实际的数据基础。 相似文献
5.
针对现有时频分析方法提取断路器振动信号特征时存在的不足,引入相空间变换对一维振动观测序列进行重构,并提取有效特征信息用于断路器机械故障诊断。基于互信息法和G-P算法计算延迟时间和嵌入维数,对振动信号进行相空间重构。根据重构得到的振动模型,分别计算相点分布因数(PPDC)及振动信号的网格维数。为了增强特征对信号描述的差异性,结合常用时域特征参数,构成一种新的故障特征描述向量。最后应用支持向量机进行特征分类,实现了对断路器操作机构卡涩和基座螺丝松动等常见机械故障类型的有效识别,具有良好的应用价值。 相似文献
6.
采用振动信号零相位滤波时频熵的高压断路器机械故障诊断 总被引:5,自引:0,他引:5
为了以较少的计算量从高压断路器振动信号中获取机械状态信息,提出一种零相位滤波时频熵方法。通过小波包方法分析高压断路器振动信号的时频分布,并利用边际谱和瞬时能量密度计算时频平面的划分间隔。依据频带间隔,采用零相位数字滤波器提取频带分量;依据时间间隔,将各频带分量划分为多个子时间段。用子时段幅值包络的积分构造各频带分量的信息熵,并共同组成时频熵向量,对振动信号的时频特性进行量化表达。在真空断路器上进行模拟试验,获得了正常状态、铁心卡涩、软连接松动和绝缘拉杆故障等模式的样本数据。引入支持向量机分类器,对不同状态的样本数据进行诊断,准确率达90%。验证了通过零相位滤波时频熵方法诊断高压断路器机械故障的可行性。 相似文献
7.
8.
9.
基于经验模态分解的高压断路器机械故障诊断方法 总被引:9,自引:1,他引:9
分析高压断路器机械振动信号的特性,提出一种以改进的经验模态分解(empirical mode decomposition,EMD)能量熵和支持向量机(support vector machine,SVM)相结合的诊断高压断路器机械故障的方法,并给出了可行的诊断步骤和分析.首先利用经验模态分解方法将高压断路器的振动信号分解成一些相互独立的内禀模态函数"(intrinsic mode function,IMF),然后利用正常状态标准信号所得各固有内禀模态函数包络信号的等能量分段方式,实现对待测状态信号各IMF包络的时间轴分段,计算各待测信号IMF包络的能量熵向量,以此构造的经验模态分解能量熵向量作为支持向量机的输入向量.采用"次序二叉树"向量机分类,利用梯度法和交叉检验优化支持向量机模型参数.实验结果表明,该方法诊断高压断路器机械故障能取得良好的效果. 相似文献
10.
基于振动信号经验模态分解及能量熵的高压断路器故障识别 总被引:2,自引:2,他引:2
为了准确地检测出高压断路器的故障类型,笔者首次将经验模态分解(EMD)方法引入高压断路器的振动信号分析当中,并提出将EMD分解得到的固有模态函数(IMF)能量熵值作为表征断路器故障类型的新特征向量。为了证实该分析方法的有效性,笔者在实验室的110 kV SF6断路器上进行了模拟实验,提取了正常和故障状态下振动信号的IMF能量熵值特征向量,并以此作为径向基神经网络的输入向量。最后,引入置信度的概念,对径向基神经网络的输出结果进行评价。该方法基于实验室研究取得了较好的识别效果,并为基于振动信号的断路器故障识别提供了一条新的思路。 相似文献
11.
12.
13.
14.
为有效检测高压断路器的机械状态,提高其运行可靠性,基于优化变分模式分解(VMD)法对高压断路器分合闸过程中的振动信号进行了分析。首先利用粒子群优化算法基于整体正交系数得到了最优的VMD结果,然后对振动信号Hilbert变换的时频谱进行了合理划分,据此定义了振动信号的特征向量及相似度指标。对某40.5 kV断路器正常与典型故障下振动信号的分析结果表明,所提出的优化VMD算法的分解结果更为准确,所定义的相似度指标能有效识别断路器的典型故障。当相似度大于0.9时,断路器机械状态正常;当相似度在0.7~0.9之间,可能发生缓冲机构故障;当相似度小于0.7时,可能发生传动机构故障。 相似文献
15.
高压断路器是电力系统中关键的控制和保护设备,针对其故障诊断方法的不足之处,将振声数据级融合和特征级融合应用于高压断路器故障诊断方法。振声特征级融合诊断方法首先将采集到的声波信号通过快速核独立分量分析(Fast KICA)实现盲源分离处理,其次利用改进集合经验模式分解(EEMD)提取振动信号和声波信号的特征向量。振声数据级融合诊断方法首先构建振声联合图像,其次利用改进的BEEMD提取特征向量。最后将两种方法提取的特征向量输入支持向量机模型(SVM)进行故障诊断,实验结果表明,所提方法诊断高压断路器故障能取得良好的效果。 相似文献
16.
高压断路器是最重要的电力设备之一,在电力系统中起控制和保护作用。为了提高高压断路器故障诊断的准确率,提出了一种基于概率神经网络(PNN)的高压断路器故障诊断方法。该方法在分析高压断路器的故障特性来确定特征信号的基础上建立了PNN故障诊断模型,该模型将采集的特征数据作为网络的输入,通过Parzen窗估计法得到类条件概率密度,进而按Bayes决策规则对特征数据进行分类。经仿真表明,概率神经网络故障诊断模型具有收敛速度快、故障诊断准确率高、容易训练等特点。因此,该方法是一种有效的故障诊断方法,具有良好的应用前景。 相似文献
17.
18.
基于DSP的高压断路器状态在线监测装置 总被引:4,自引:1,他引:4
介绍一种基于数字信号处理器DSP(Digital Signal Processor)的高压断路器状态在线监测装置。该装置采用TI公司的DSPVC33作为主控制器,能够采集断路器的多种状态信息,实现对状态特征的长数据录波和大量历史数据存储,并快速、高精度地在线计算评估断路器动作后的触头电寿命和机械寿命,在此基础上构成分布式的高压断路器状态监测系统。 相似文献