首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。  相似文献   

2.
3.
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。  相似文献   

4.
针对高压断路器分、合闸动作过程中产生的振动信号持续时间短暂及强烈的非线性非平稳性,导致的特征提取困难问题,提出一种变分模态分解(VMD)-希尔伯特(Hilbert)边际谱能量熵,及支持向量机(SVM)的高压断路器振动信号组合特征提取和机械故障诊断方法.采用VMD对高压断路器振动信号进行分解,得到一系列反映振动信号局部特...  相似文献   

5.
基于振动信号识别的断路器故障诊断研究   总被引:1,自引:0,他引:1  
《高压电器》2017,53(2):1-7+13
文中搭建了真空断路器试验平台,实现了主轴卡涩等四类机械故障状态。通过将正常及故障状态下的实测振动信号进行经验模态分解,得到所需要的内禀模态函数(intrinsic made function,IMF),利用能量法求出包含主要故障特征信息的各内禀模态函数分量的能量总量。利用IMF分量能量总量作为特征向量,并以此作为支持向量机输入,分析对比了不同分类策略、核函数的分类时间和分类准确率,经实验分析选用\"一对其他\"分类策略并且核函数为径向基函数的分类效果最优,为研制完善的断路器故障诊断系统提供理论依据及实际的数据基础。  相似文献   

6.
针对现有时频分析方法提取断路器振动信号特征时存在的不足,引入相空间变换对一维振动观测序列进行重构,并提取有效特征信息用于断路器机械故障诊断。基于互信息法和G-P算法计算延迟时间和嵌入维数,对振动信号进行相空间重构。根据重构得到的振动模型,分别计算相点分布因数(PPDC)及振动信号的网格维数。为了增强特征对信号描述的差异性,结合常用时域特征参数,构成一种新的故障特征描述向量。最后应用支持向量机进行特征分类,实现了对断路器操作机构卡涩和基座螺丝松动等常见机械故障类型的有效识别,具有良好的应用价值。  相似文献   

7.
为了以较少的计算量从高压断路器振动信号中获取机械状态信息,提出一种零相位滤波时频熵方法。通过小波包方法分析高压断路器振动信号的时频分布,并利用边际谱和瞬时能量密度计算时频平面的划分间隔。依据频带间隔,采用零相位数字滤波器提取频带分量;依据时间间隔,将各频带分量划分为多个子时间段。用子时段幅值包络的积分构造各频带分量的信息熵,并共同组成时频熵向量,对振动信号的时频特性进行量化表达。在真空断路器上进行模拟试验,获得了正常状态、铁心卡涩、软连接松动和绝缘拉杆故障等模式的样本数据。引入支持向量机分类器,对不同状态的样本数据进行诊断,准确率达90%。验证了通过零相位滤波时频熵方法诊断高压断路器机械故障的可行性。  相似文献   

8.
9.
基于经验模态分解的高压断路器机械故障诊断方法   总被引:9,自引:1,他引:9  
分析高压断路器机械振动信号的特性,提出一种以改进的经验模态分解(empirical mode decomposition,EMD)能量熵和支持向量机(support vector machine,SVM)相结合的诊断高压断路器机械故障的方法,并给出了可行的诊断步骤和分析.首先利用经验模态分解方法将高压断路器的振动信号分解成一些相互独立的内禀模态函数"(intrinsic mode function,IMF),然后利用正常状态标准信号所得各固有内禀模态函数包络信号的等能量分段方式,实现对待测状态信号各IMF包络的时间轴分段,计算各待测信号IMF包络的能量熵向量,以此构造的经验模态分解能量熵向量作为支持向量机的输入向量.采用"次序二叉树"向量机分类,利用梯度法和交叉检验优化支持向量机模型参数.实验结果表明,该方法诊断高压断路器机械故障能取得良好的效果.  相似文献   

10.
夏小飞  芦宇峰  苏毅  杨健 《中国电力》2021,54(10):169-176
断路器机械部件传动、撞击产生的振动信号具有混沌特性,运用常规的信号处理方法很难分析其特性。首先采用互信息法和Cao算法将振动信号重构至高维空间后,计算其排列熵作为特征向量,输入支持向量机对断路器机械故障类型进行诊断,最后用粒子群算法(PSO)改进的万有引力搜索算法(GSA)混合算法优化支持向量机参数,利用断路器实测振动信号进行验证。结果表明:相空间重构与排列熵结合能够准确提取断路器振动信号的特征,采用PSO-GSA改进的支持向量机能快速有效分辨断路器故障类型,解决了现有诊断方法的路径扭曲、能量泄露和模态混叠等问题。  相似文献   

11.
    
Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper.  相似文献   

12.
针对利用单一信号诊断高压断路器多种故障的局限性,本文提出了一种电振联合特征的高压断路器多故障诊断方法。首先,对高压断路器合闸操作过程中的线圈电流信号用峰值谷值算法提取电流波形关键时间节点及对应幅值构建电气特征;对振动信号进行VMD分解,计算不同模态分量下的多尺度散布熵值构建机械特征;然后,将电气与机械特征向量进行主成分分析与降维,根据得到的方差贡献率生成电振联合特征,有效解决了特征向量冗余问题;最后将不同故障下的电振联合特征输入到模糊C均值聚类中,精准分类出高压断路器故障类型。实验结果表明,所提方法比单一信号故障诊断准确率更高,分类效果更显著,并在不同诊断模型中进行验证,识别准确率达98.6%,可以有效实现高压断路器多故障诊断。  相似文献   

13.
基于小波能量与神经网络的断路器振动信号识别方法   总被引:3,自引:1,他引:2  
高压断路器出现机械故障不仅会引起振动冲击事件的时间漂移,还会引起时域波形中一些波峰幅值的变化。依据同一类型断路器振动信号相似的特点,在对高压断路器故障振动信号进行特征分析的基础上,提出了一种识别高压断路器振动信号的新方法:将小波包提取算法和径向基神经网络模式识别功能相结合,利用小波包分解与重构原理将断路器合闸振动信号分解到不同频段中,提取每个频带能量作为断路器状态监测的特征向量,作为径向基神经网络的输入向量;基于径向基神经网络的故障诊断方法在系统参数未知的情况下自动建立动态模型,对于线性系统和非线性系统都有很好的跟踪能力,通过实验室断路器典型合闸振动信号的监测及识别分析验证了该方法的有效性。  相似文献   

14.
根据高压断路器机械振动信号的特点,提出一种基于多分辨率奇异谱熵的信号特征提取方法,并以此特征向量作为支持向量机的输入对断路器机械状态进行识别.多分辨率奇异谱熵是在信息熵模型的基础上,将多分辨率分析和奇异谱分析有效结合的一种信息处理方法,用信号的奇异谱熵作为特征向量更能体现断路器在不同机械状态下的不同特征.利用交叉检验和粒子群优化方法来对支持向量机模型中的参数进行寻优.通过对断路器实际振动信号分析表明,该方法能对断路器故障进行准确诊断分类.  相似文献   

15.
提出一种基于小波-包络谱能量提取振动信号特征并进行故障诊断的新方法。首先应用小波分析对振动信号进行降噪处理,然后与希尔伯特变换相结合,提取振动信号的低频和高频包络,最后对包络信号进行谱分析及能量特征提取。实验结果表明,该方法对提取高压真空断路器机械振动信号的特征是有效的,可为故障诊断提供依据。  相似文献   

16.
振动信号小波包特征熵的时变与频变特性分析   总被引:5,自引:0,他引:5  
孙来军 《高电压技术》2007,33(8):146-150
为了更好的反应高压断路器的机械振动状态,介绍了一种基于小波包分解的断路器振动信号特征提取新方法。将正常状态标准信号3层小波包分解后提取第3层各节点重构信号的包络,利用能量均等的原则将各包络分成15段并提取各分段时间点并利用正常状态标准信号所得包络的分段时间点分段测试信号的对应节点包络,再利用熵原理计算各节点熵,组合后形成小波包特征熵向量用于断路器故障诊断。利用实际信号分别模拟时变和频变信号测试所得向量变化特性的仿真结果表明:无论在时变还是频变情况下,该方法所提取的振动信号特征向量都可以以不同的变化特性直观、明显地反映信号的变化。  相似文献   

17.
小波包-特征熵在高压断路器故障诊断中的应用   总被引:1,自引:1,他引:1  
在详细介绍小波包和特征熵的基础上,提出了一种基于振动信号的断路器机械故障诊断新方法.该方法首先在振动信号小波包分解的第3层各节点重构信号,并提取包络;而后利用包络信号的分段能量,计算小波包-特征熵向量;最后将正常状态和待测状态下所得向量之间的欧氏距离作为诊断参量.对某少油断路器无负载开断振动信号的分析证实,该方法检测断路器故障简单、准确,能同时在时域和频域检测断路器状态的变化.  相似文献   

18.
指出目前断路器在线监测和诊断技术存在的问题.在对SF6断路器状态参数进行实时监测的同时,总结出适用于LW11-252型SF6高压断路器在线监测的方法,介绍了该监测系统的开发原理及系统构成.以合、分闸线圈电流、触头行程-时间持性曲线及触头寿命为系统监测参数,介绍了断路器故障的分析与预测方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号