首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于熔融共混法,分别采用双转子连续混炼挤出机和同向啮合双螺杆挤出机制备了20 %玻璃纤维增强聚丙烯(GFRPP)复合材料,并对制备出的GFRPP复合材料中玻璃纤维残存长度及其力学性能进行了相应表征,在此基础上探讨了具有不同混炼特性的混炼设备结构对GFRPP复合材料中玻璃纤维残存长度及其力学性能的影响。结果表明,GFRPP复合材料的力学性能随玻璃纤维残存长度的增加而明显提高;双转子连续混炼挤出机相对于同向啮合双螺杆挤出机更有利于保留长玻璃纤维,同时适当减弱双转子连续混炼挤出机的转子的分散混合能力,降低转子转速,有利于提高玻璃纤维的残存长度,制备出更高性能的GFRPP复合材料。  相似文献   

2.
ABSTRACT

The physical and mechanical properties of Polypropylene (PP) and Fe-PP polymer composites containing 5, 10, and 15 vol% Fe were investigated experimentally. After preparing PP and Fe–PP polymer composites with a twin screw extruder and injection molding, the following properties were determined: yield and tensile strength, the modulus of elasticity, % elongation, hardness (Shore D), Izod impact strength (notched), melt flow index (MFI), Vicat softening point, Heat deflection temperature (HDT), and melting temperature (Tm) of PP and metal-polymer composites. As compared to PP, It was found that by increasing the vol% of Fe in PP, notched Izod impact strength, yield and tensile strength, and % elongation decreased. On the other hand, the modulus of elasticity, hardness, MFI, vicat softening point, and HDT values increased with the amount of iron.  相似文献   

3.
采用双螺杆挤出共混法制备了短玻璃纤维(GF)改性聚丙烯(PP)2240S的共混物,通过力学性能分析测试、扫描电子显微镜表征、熔体流动速率测试和熔融结晶分析等研究了改性体系的力学性能、显微结构、加工流动性和结晶性能等。结果表明,当GF添加量为30%时,复合体系的弯曲强度、弯曲弹性模量、拉伸强度等较纯PP分别提高约112%,269%和108%,但GF与基体粘结力弱导致冲击强度没有提高;为进一步改善界面作用力,以5%马来酸酐接枝聚丙烯作相容剂,相同GF添加量下PP的弯曲强度达86.99 MPa,弯曲弹性模量达5073 MPa,拉伸强度达78.5 MPa,简支梁缺口冲击强度达14.78 kJ/m2,比纯PP的相关指标分别提高约161%,302%,190%和131%,GF与PP界面粘结力增强,PP的力学性能随GF含量的递增而大幅提高。但GF降低了PP的熔体流动速率,并且体系的结晶温度基本未变,结晶度降低,可能与未产生界面横晶有关。  相似文献   

4.
Long fiber molding materials are expected to play an important role in the near future. This paper describes a series of experiments performed to examine properties of ternary blends containing glass fiber (GF), polyamide (PA), and polypropylene (PP). The continuous glass fiber was impregnated with one of the blend constituent polymers by our specially designed impregnation apparatus and cut into chips of 6 mm length. These chips and the other polymer were used to produce various testing specimens in a twin screw extruder or in injection molding machine. The results indicated that the effect of fiber addition on the mechanical and rheological properties is clearly dependent on the order of impregnation process. In the blends containing the GF/PA + PP, the GFs are preferentially encapsulated with PA, and therefore the mechanical properties are superior to the blends with the GF/PP + PA in which the PP phase is located surrounding the GFs. This improved wetting of fibers by sequential impregnation not only resulted in better properties but also protected the fibers from shear action of the screw, thereby allowing significant increase in average fiber length to be achieved in the injection molding process.  相似文献   

5.
尹立  张翀  陈新  杨威  李刚  王裕成  黄兆阁 《塑料工业》2020,48(1):127-131
采用双螺杆挤出机挤出工艺,制备了硅微粉改性聚酰亚胺(PI)/聚苯硫醚(PPS)/玻璃纤维(GF)复合材料。研究了PPS用量和硅微粉用量对PI/PPS/GF复合材料力学性能、动态力学性能、线膨胀系数和热性能的影响。复合材料拉伸强度、弯曲强度、悬臂梁无缺口冲击强度和初始储能模量随PPS用量增加而逐渐降低,线膨胀系数和熔体质量流动速率随之增加;材料力学性能随硅微粉用量增加先增加后减小,线膨胀系数和熔体质量流动速率随之增加而明显降低。差示扫描量热仪(DSC)数据分析表明,PPS材料的加入使复合材料在230~240℃出现了结晶峰,硅微粉使初始结晶温度变高;复合材料的热稳定性能随着熔融硅微粉用量增加而增加。  相似文献   

6.
玻纤增强PPS/MgO绝缘导热复合材料的研究   总被引:5,自引:0,他引:5  
通过双螺杆挤出机将聚苯硫醚(PPS)与MgO混合挤出,同时添加玻璃纤维(GF)挤出造粒制备了玻纤增强PPS/MgO绝缘导热复合材料。研究了材料的导热性能与MgO含量的关系。研究发现,材料的热导率随MgO含量的增加而增大;GF替代部分MgO后,导热性能有所降低,但拉伸强度和冲击强度等力学性能得到提高;偶联剂用量在0.5%时可提高PPS/MgO绝缘导热复合材料的热导率。  相似文献   

7.
The mechanism of fiber length degradation during twin screw extrusion compounding and methods to reduce it through process and machine design are extremely important in discontinuous fiber reinforced composites. Fiber damage along the screw and the extruder die are determined for three screw designs with different mixing sections. The pellet quality, wet-out, and fiber dispersion in the extruded strands are compared. The fiber orientation distributions in the screw are determined to identify regions of higher fiber interaction. The fiber damage during subsequent injection molding has also been determined. The tensile, flexural, and impact properties of the tensile bars are compared. It is found that the residence time, fill-up, and the intesity of mixing during extrusion compounding have a predominant effect on fiber length degradation. The screw designs were seen to have a greater effect on the fiber damage in the 40 wt% glass-filled polymer than the 30 wt% glass-filled polymer. However, the mechanical properties of the 30 wt% glass-filled polymer showed an increasing trend compared to the 40 wt% glass filled polymer. A screw design that provides a balance of the fiber length, wet-out, and fiber dispersion was noted to give consistent mechanical properties.  相似文献   

8.
采用在材料熔融挤出共混过程中提高双螺杆挤出机螺杆转速的方法,研究了较高螺杆转速条件下双螺杆挤出机的机械剪切应力和弹性体的种类、用量等因素对丙烯腈-丁二烯-苯乙烯共聚物(ABS)/聚苯乙烯(PS)共混材料力学性能和加工流动性能的影响。结果表明,双螺杆挤出机的高剪切应力可促进分散相颗粒的分散和界面结合力的增强,引起共混材料力学性能和熔体流动速率的改善。丁腈橡胶(NBR)粉末对ABS/PS共混材料具有增容增韧作用,挤出共混温度为220℃,螺杆转速在720 r/min,NBR粉末质量分数为10%时,ABS/PS共混材料的缺口冲击强度为16.4 kJ/m2,比改性前约提高1.6倍,达到ABS树脂冲击韧性的指标,并保持了良好的加工流动性。  相似文献   

9.
The inter‐relationship between processing conditions and fiber breakage has been studied for glass fiber‐reinforcedpolyamide 12, prepared using (i) an internal batch mixer, (ii) a laboratory scale corotating twin screw extruder, and (iii) an industrial scale twin screw extruder. The average fiber lengths and fiber length distributions were measured for various compounding conditions (screw or rotor speed, mixing time, feed rate). Experimental results have shown that fiber breakage depends on both screw speed and mixing time, the later being controlled, in an extruder, by the feed rate. For a given compounding system (batch mixer or twin screw extruder), the energy input (specific mechanical energy, SME) during the compounding process is found to be a reliable parameter, which governs fiber length (average, minimal, and maximal) evolution. Experimental data are correctly described with a model defining change in fiber length as a function of SME. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The effects of processing conditions on fiber length degradation were investigated in order to produce composites with higher performance. Nylon‐6 was compounded with glass fibers in a twin‐screw extruder for various combinations of screw speed and feed rate. Collected samples were injection molded and Izod impact and tensile tests were performed in order to observe the effect of fiber length on the mechanical properties. Also, by using the extruded and injection molded smaples, fiber length distribution curves were obtained for all the experimental runs. Results show that when the shear rate is increased through the alteration of the screw speed and/or the feed rate, the average fiber length decreases. Impact strength, tensile modulus and tensile strength increase, whereas elongation at break decreases with the average fiber length.  相似文献   

11.
The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin‐screw extruder and third melt blending in an injection molding machine, was investigated by measuring their glass transition temperatures (Tg) and their specific heat increment (ΔCp). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (Tg) of the two phases in melt‐mixed PC/PS blends suggest partial miscibility of one polymer in the other. The observed solubility strongly depends on blend composition and blending method. The Tg measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first stages (melt extrusion) and the second stages (remelt extrusion).  相似文献   

12.
采用玻璃微珠(GB)改性聚丙烯(PP)和线性低密度聚乙烯(LLDPE),对玻璃微珠的用量、粒径和复合材料加工方法对材料的力学性能的影响进行了比较研究。结果表明:随着GB用量的增加,单、双螺杆挤出GB/PP复合材料的拉伸模量、弯曲强度和弯曲模量均呈线性增长的趋势,而屈服强度则有小幅下降;断裂应变在低含量时有所提高,然后迅速下降;单双螺杆挤出材料的冲击强度均有所提高,并在一定范围内随GB用量的提高而增大,且单螺杆挤出材料的冲击强度略高于双螺杆挤出材料。而GB/LLDPE中,随着GB用量的增加,单螺杆挤出复合材料的拉伸模量、弯曲模量均呈线性增长趋势,而屈服强度和弯曲强度在含量较高时略有上升;双螺杆挤出复合材料的拉伸模量、屈服应力、弯曲强度和弯曲模量均呈线性增长的趋势,两者的断裂应变都有所降低,但没有严重劣化LLDPE复合材料的冲击特性。GB的粒径对两种复合材料的力学性能影响不大,但对GB/PP复合材料的韧性有较大影响。单、双螺杆挤出GB/PP复合材料的冲击强度在一定范围内较纯料有一定提高;同样的,双螺杆挤出复合材料的冲击强度低于单螺杆挤出材料。  相似文献   

13.
以聚丙烯(PP)树脂为基体,加入玄武岩纤维(BF)和相关助剂,通过双螺杆挤出机熔融共混制得相应复合材料。考查相容剂对PP/BF复合材料性能影响、对PP/BF复合材料和PP/玻璃纤维(GF)复合材料力学性能、微观形貌和耐热氧老化等性能进行对比。通过实验数据分析,加入相容剂后,拉伸强度提高126.8%,弯曲强度提高223.8%,弯曲弹性模量提高119.9%,悬臂梁缺口冲击强度提高223.2%。在同样质量配比下,PP/BF复合材料较PP/GF复合材料拉伸强度提高9.8%,弯曲强度提高11.0%,弯曲弹性模量提高5.8%,悬臂梁缺口冲击强度降低10.7%。从微观电镜分析,加入相容剂可明显改善纤维与PP基材界面浸润程度。另外,BF比GF更易使复合材料老化,常规热氧老化剂1010和168对纤维增强PP类材料耐老化效果并不好,用等量自制热氧老化剂可解决此问题。  相似文献   

14.
研究了不同共混方式对高密度聚乙烯(HDPE)/聚碳酸酯(PC)共混体系形态与性能的影响。将不同组成的HDPE/PC分别在双螺杆、单螺杆挤出机中共混后注射成型,测试注射样条的力学性能并用扫描电子显微镜(SEM)对样条断面进行形态观察。结果发现,共混方式对共混体系拉伸强度影响不大,但对冲击强度和断面形态影响较大。当PC含量低时,双螺杆的共混效果不如单螺杆;当PC含量较高时,双螺杆的共混效果优于单螺杆。  相似文献   

15.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
利用熔融浸渍装置,采用长玻纤(LGF)增强双马来酰亚胺等改性的聚丙烯(PP),制备了LGF增强PP复合材料。研究了在螺杆转速为80~250 r/min、背压为8~10 MPa的注塑条件下,复合材料的纤维长度、力学性能与热变形温度的变化。在研究范围内,注塑工艺参数的变化对复合材料的弯曲强度和热变形温度没有明显的影响,但随着螺杆转速的提高,纤维长度下降,所得复合材料的冲击强度先降低后升高。  相似文献   

17.
The effect of processing conditions and elastomer content on the toughening of Polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene tri‐block copolymer (SEBS) in a twin‐screw extruder has been investigated. The parameters analyzed were: temperature profile, screw speed, and feed rate of the blend components. Their effect was evaluated through the mechanical properties (tensile strength and Izod impact resistance at room temperature) as well as the morphology of the dispersed phase by means of scanning electron microscopy (SEM). The results showed that the impact resistance increases with increasing rotor speed and feed rate and decreases when the temperature profile is increased. The parameter with the greatest effect on the mechanical properties was the variation in rotor speed. Despite the fact that impact resistance as high as 25 times that of neat PP has been achieved with blends containing 20 wt % SEBS, no significant modification in phase morphology has been observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2185–2193, 2001  相似文献   

18.
In this study, 5, 10, and 15 vol.% of bronze (Cu-10 wt.% Sn) powder on the physical and mechanical properties of Acrylonitrile-Butadiene-Styrene (ABS) were investigated experimentally. After preparing metal-polymer matrix composites (PMC) with a twin screw extruder and injection molding, fracture surface, the modulus of elasticity, yield and tensile strength, percentage elongation, Izod impact strength, hardness (Shore D), melt flow index (MFI), heat deflection temperature (HDT), Vicat softening point, and glass transition temperature (T g) of each sample were determined. As compared to the unfilled ABS. It was found that by increasing the vol.% of bronze in ABS, yield and tensile strength, % elongation, Izod impact strength, MFI values decreased, while the modulus of elasticity, Shore D hardness, Vicat softening point, and HDT values increased.  相似文献   

19.
Polypropylene (PP) composites containing 20 wt% short flax fibers are prepared, and the process parameters such as throughput, rotational speed, and screw configuration are varied during melt compounding with a corotating intermeshing twin‐screw extruder. The investigations reveal that low rotational speeds, high throughputs, and moderate shear energy inputs by the screw configuration led to an optimum set of mechanical properties. To investigate the influence of different composite compositions on the mechanical properties, composites with fiber contents between 0 and 40 wt% and maleic anhydride‐grafted PP (PP‐g‐MA) contents between 0 and 7 wt% are prepared. Increasing fiber contents enhance the Young's modulus and decrease the elongation at break and the notched impact strength. The tensile strength is barely affected. The addition of PP‐g‐MA increases the tensile strength as well as the elongation at break, whereas the Young's modulus is not influenced. Thus, PP‐g‐MA enhances the adhesion between PP and flax fibers significantly. POLYM. COMPOS., 36:2282–2290, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
This paper presents the effects of multi‐walled carbon nanotube (MWCNT) as reinforcing agent on some properties of natural fiber/polypropylene composites. In the sample preparation, MWCNT contents and fiber types (bagasse stalk and poplar) were used as variable parameters. The composites with different MWCNT contents were fabricated by melt compounding in a twin‐screw extruder and then by injection molding. The mass ratio of the wood flour to polymer was 40/60 (w/w). The mechanical properties of composites in terms of tensile, flexural, and Izod impact strength were evaluated. The morphology of the specimens was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Based on the findings of this study, it appears that mechanical properties reached the maximum when 2.5 wt% MWCNT were used. However, addition of 3.5 wt% MWCNT could not enhance the mechanical properties considerably. TEM micrographs showed that at high level of MWCNT loading (3.5 wt%) increased population of MWCNT leads to agglomeration and stress transfer gets blocked. The mechanical properties of composites filled with poplar fibers were generally greater than bagasse stalk composites. POLYM. COMPOS., 37:3269–3274, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号