首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In recent years the technology of low‐alloy TRIP steels has considerably advanced. The mechanical properties are characterised by a combination of high yield strength and high uniform elongation as well as enhanced formability. In the present work an effort to correlate mechanical properties with the retained austenite stability was made. Two low‐alloy TRIP steels were investigated. The first of them represents a typical composition of the low‐alloy TRIP steels, while the other one contains aluminum as alloying element. The influence of the heat treatment on the mechanical properties and especially on the amount and stability of the retained austenite was determined. The retained austenite stability was measured with a single specimen technique, in which a tensile specimen was used to determine the MσS temperature with a loading‐unloading procedure. The results showed that there is a strong influence of the stability of the retained austenite on the mechanical properties. Increased stability combined with a high amount of retained austenite, exhibited an increase in both, yield strength and uniform elongation while increased amount of retained austenite with low stability did not show the same good combination of mechanical properties. The results clearly indicate that in order to get the maximum TRIP effect, a good combination of austenite stability and amount is required.  相似文献   

2.
Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.  相似文献   

3.
Based on uniaxial tensile and plane strain deformation tests,the effects of strain states on the stability of RA(retained austenite)in medium Mn steels,which were subjected to IA(intercritical annealing)and QP(quenching and partitioning)processing,were investigated.The volume fractions of RA before and after deformation were measured at different equivalent strains.The transformation behaviors of RA were also investigated.The stability of RA differed across two different transformation stages at the plane strain state:the stability was much lower in the first stage than in the second stage.For the uniaxial tension strain state,the stability of RA corresponded only to a single transformation stage.The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state.One type was that the martensite originated in the strain-induced stacking faults(SISF).The other type was the strain-induced directly twin martensite at a certain equivalent strain.However,for the uniaxial tension state,only the strain-induced twin martensite was observed.Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states.In addition,complex microstructures of stacking faults and lath-like phases were observed within a grain at the plane strain state.  相似文献   

4.
The current status of developing a fundamental model for describing the overall austenite decomposition kinetics to ferrite and carbide‐free bainite in low carbon TRIP steels alloyed with Mn and Si is reviewed. For ferrite growth, a model is proposed where both interface and carbon diffusion‐controlled ferrite formation are considered in a mixed‐mode approach. The kinetic model is coupled with Thermocalc to obtain necessary thermodynamic information. Spherical geometry with an outer ferrite shell is assumed to capture in a simple way the topological conditions for growth. The mixed‐mode modelling philosophy has been identified to permit a rigorous incorporation of the solute drag effect of substitutional alloying elements, in particular Mn. The Purdy‐Brechet solute drag theory is adopted to characterize the interaction of Mn with the moving austenite‐ferrite interface. The challenges of quantifying the required solute drag parameters are discussed with an emphasis on a potential solute drag interaction of Mn and Si. The model is extended to non‐isothermal processing paths to account for continuous and stepped cooling occurring on the run‐out table of a hot strip mill or on a continuous annealing line. The transformation start temperature during cooling is predicted with a model combining nucleation and early growth which had previously been validated for conventional low carbon steels. The overall model is evaluated by comparing the predictions with experimental data for the ferrite growth kinetics during continuous cooling of a classical TRIP steel with mass contents of 0.19 % C, 1.49 % Mn and 1.95 % Si. Extension of the model to include bainite formation remains a challenge. Both diffusional and displacive model approaches are discussed for the formation of carbide‐free bainite. It is suggested to develop a combined nucleation and growth model which would enable to capture a potential transition from a diffusional to a displacive transformation mode with decreasing temperature.  相似文献   

5.
Uniform ductility and formability of low alloy steels can be improved by the transformation plasticity effect of metastable retained austenite. In this work, intercritical annealing followed by bainite transformation resulted in the retention of austenite with sufficient stability for transformation plasticity interactions. The effect of retained austenite on mechanical properties was studied in two low-alloy steels. Bainite transformation was carried out in the range of 400 to 500°C. The strength properties (yield strength and ultimate tensile strength) were more sensitive to bainite isothermal transformation temperature than holding time. Maximum strength properties were obtained for the lower transformation temperatures. On the other hand, high uniform and total elongation values were obtained at lower transformation temperatures but were sensitive to bainite isothermal transformation time. Variations in uniform elongation with holding time were linked to variations in retained austenite stability. Maximum values of uniform elongation occurred at the same holding times as the maximum amount of retained austenite. The same was true for total elongation and ultimate tensile strength. The above results indicate a strong correlation between retained austenite stability and uniform ductility and suggest that further optimisation regarding chemical composition and processing with respect to austenite stabilisation may lead to a new class of triple-phase high-strength high-formability low-alloy steels.  相似文献   

6.
Microstructures and mechanical properties of Ti-V micro-alloyed TRIP( transformation-induced plasticity) steel with different compositions were investigated by tensile test,scanning electron microscopy( SEM),transmission electron microscopy( TEM),X-ray diffraction( XRD) and thermodynamic calculation( TC). The results indicated that the steel exhibited high ultimate tensile strength( 1 079MPa),sufficient ductility( 28%) and the highest product of strength and ductility( 30 212 MPa·%) heat treated after intercritical annealing at 800℃ for 3 min and bainitic annealing at 430 ℃ for 5 min. In addition,the change of volume fraction of retained austenite( VF-RA) versus tensile strain was measured using in-situ analysis by X-ray stress apparatus and micro-electronic universal testing machine. It was concluded that a-value could be used to evaluate the stability of retained austenite( S-RA) in the investigated Ti-V micro-alloyed TRIP steel. The smaller a-value indicated the higher stability of retained austenite( S-RA) and the higher mechanical properties of Ti-V micro-alloyed TRIP steel.  相似文献   

7.
This paper is concerned with the direct transformation of austenite at high temperatures to form ferrite and alloy carbide dispersions. The ferrite/austenite interfaces vary from high energy random boundaries to low energy planar boundaries which grow by step propagation, while the alloy carbide morphologies include a pearlitic form, fine fibers and fine banded arrays of particles. It is shown that these morphologies are closely related to the mode of growth of the ferritic matrix. The role of various alloying elements on the carbide dispersion is examined, and the effects of other metallurgical variables on the banded dispersions are discussed, including factors which influence the dispersion stability. The mechanical properties of directly transformed alloy steels are shown to depend largely on the ferrite grain size and the state of the carbide dispersion. Micro-alloyed steels subjected to controlled rolling provide an excellent example of the achievement of high strength and toughness levels by control of these variables. The paper finally attempts to show how such benefits can be achieved in low and medium alloy steels, and in particular where resistance to creep failure at elevated temperatures is an important property.  相似文献   

8.
This paper is concerned with the direct transformation of austenite at high temperatures to form ferrite and alloy carbide dispersions. The ferrite/austenite interfaces vary from high energy random boundaries to low energy planar boundaries which grow by step propagation, while the alloy carbide morphologies include a pearlitic form, fine fibers and fine banded arrays of particles. It is shown that these morphologies are closely related to the mode of growth of the ferritic matrix. The role of various alloying elements on the carbide dispersion is examined, and the effects of other metallurgical variables on the banded dispersions are discussed, including factors which influence the dispersion stability. The mechanical properties of directly transformed alloy steels are shown to depend largely on the ferrite grain size and the state of the carbide dispersion. Micro-alloyed steels subjected to controlled rolling provide an excellent example of the achievement of high strength and toughness levels by control of these variables. The paper finally attempts to show how such benefits can be achieved in low and medium alloy steels, and in particular where resistance to creep failure at elevated temperatures is an important property.  相似文献   

9.
Forming limit diagram (FLD) of cold- rolled TRIP steel was established by experiments. The microstructures of samples before and after deformation were examined by metalloscopy and scanning electron microscopy and at the same time the contents of retained austenite after different strain ratios were measured by X- ray diffraction. The results show that the ultimate strain under plane strain state(FLD0) is 0. 397. With the strain ratio increasing, strain path changes from uniaxial stretching to plane strain and then biaxial stretching and the transformation amount of residual austenite increases gradually. Compared with dual- phase steel, the higher FLD0of TRIP steel is ascribed to TRIP effect and necking area is wider during deformation.  相似文献   

10.
The microstructure and occurrence of a microconstituent, consisting of martensite and retained austenite in hot-rolled plates of low-carbon bainitic steels was studied by electron microscopy and microprobe analysis. The results of the studies showed that the formation of the martensite-austenite constituent is controlled by the composition of the steel and by the cooling rate of the plates following hot-rolling. The mechanisms involved in the formation of the martensiteaustenite constituent are discussed.  相似文献   

11.
12.
史园园  胡锋 《中国冶金》2015,25(1):21-25
采用不同的热处理工艺研究了残留奥氏体对中碳双相钢冲击韧性的影响。利用金相显微镜、扫描电镜、透射电镜和摆锤式冲击试验机,对不同试样的显微组织与冲击韧性进行观察、检测和分析。试验结果表明:中碳贝氏体钢的冲击性能显著高于Q/P马氏体钢(室温冲击功是57J对应15J,-40℃冲击功是33J对应9J),可能的原因是贝氏体钢中薄膜状残留奥氏体,对裂纹扩展的阻止效应更显著。  相似文献   

13.
The ability of retained austenite to affect stress corrosion cracking susceptibility has been examined in two steels, containing mechanically stable and unstable retained austenite of varying amounts and distributions. While limited improvements due to this constituent were observed in both threshold (where it may act as a compcting energy trap) and in growth rates (where it can act as a mechanical barrier and hydrogen sink), these were neither consistent nor more effective than other heterogeneities. Contrary to popular belief, retained austenite does not appear to be a consistently effective microstructural constituent, at least if the aim is to improve SCC performance at strength levels up to about 1000 MPa.  相似文献   

14.
The ability of retained austenite to affect stress corrosion cracking susceptibility has been examined in two steels, containing mechanically stable and unstable retained austenite of varying amounts and distributions. While limited improvements due to this constituent were observed in both threshold (where it may act as a compcting energy trap) and in growth rates (where it can act as a mechanical barrier and hydrogen sink), these were neither consistent nor more effective than other heterogeneities. Contrary to popular belief, retained austenite does not appear to be a consistently effective microstructural constituent, at least if the aim is to improve SCC performance at strength levels up to about 1000 MPa.  相似文献   

15.
The mechanical stability of dispersed retained austenite, i.e., the resistance of this austenite to mechanically induced martensitic transformation, was characterized at room temperature on two steels which differed by their silicon content. The steels had been heat treated in such a way that each specimen presented the same initial volume fraction of austenite and the same austenite grain size. Nevertheless, depending on the specimen, the retained austenite contained different amounts of carbon and was surrounded by different phases. Measurements of the variation of the volume fraction of untransformed austenite as a function of uniaxial plastic strain revealed that, besides the carbon content of retained austenite, the strength of the other phases surrounding austenite grains also influences the austenite resistance to martensitic transformation. The presence of thermal martensite together with the silicon solid-solution strengthening of the intercritical ferrite matrix can “shield” austenite from the externally applied load. As a consequence, the increase of the mechanical stability of retained austenite is not solely related to the decrease of the M s temperature induced by carbon enrichment.  相似文献   

16.
Metallurgical and Materials Transactions A - The ability of retained austenite to affect stress corrosion cracking susceptibility has been examined in two steels, containing mechanically stable and...  相似文献   

17.
High temperature deformation experiments were conducted to monitor the recrystallization process in the austenite phase of a vanadium and columbium-treated HSLA steel alloy. The results show that columbium is much more effective than vanadium in retarding recrystallization. As the austenitizing temperature, above 2000°F, or time is increased the austenite recrystallization in the 1500° to 1700°F hot working temperature range is correspondingly increased. If, following the austenitization, the samples are held in the hot working temperature range for up to 5 min before hot working recrystallization occurs at a much faster rate. Several mechanisms are offered to explain the experimental results.  相似文献   

18.
The aim of this work was to find the quantitative dependences between fracture toughness Klc and the volume fraction of retained austenite in the matrix of quenched high-speed steels. The tests were carried out on three model alloys of a different content quotient of Mo: W which, after quenching, were gradually supercooled up to ? 196°C and then tempered at 450°C. Also the measurements of the content of retained austenite in the vicinity of the surface of a sample fracture were carried out. It was determined that after tempering at 450°C the fracture toughness of the matrix of high-speed steels is directly proportional to the content of retained austenite in it. Every 1 % by volume of retained austenite increases the fracture toughness Klc of the matrix by about 5%, despite the fact that most probably it is completely transformed into fresh martensite in front of a propagating crack. Higher fracture toughness of the matrix of high-speed steels rich in molybdenum should be explained exlusively by a larger content of retained austenite. Transformations in the martensitic part of the matrix of the alloys richer in molybdenum clearly reduce the advantageous effect of retained austenite on this steel feature.  相似文献   

19.
A model for the stability of dispersed austenite in low alloy triple-phase steels has been developed. The model was based on the dislocation dissociation model for classical heterogeneous martensitic nucleation by considering stress effects on the nucleation site potency distribution. The driving force for martensitic transformation has been calculated with the aid of computational thermodynamics. The model allows for the effects of chemical composition of austenite, mean austenite particle size, yield strength of the steel and stress state on austenite stability. Chemical enrichment in C and Mn, as well as size refinement of the austenite particles lead to stabilization. On the contrary, the increase in the yield strength of the steel and triaxiality of the stress state lead to destabilization. The model can be used to determine the microstructural characteristics of the austenite dispersion, i.e. chemical composition and size, for optimum transformation plasticity interactions at the particular stress state of interest and can then be useful in the design of low-alloy triple-phase steels.  相似文献   

20.
Two different types of retained austenite were encountered in maraging steels: one obtained by the usual overaging/reversion process, and was found to be mechanically unstable at room temperature; the other, obtained in a sequence of isothermal heat treatments leading to the formation of microsegregational content zones of molybdenum and cobalt in the lath-martensite, and was found to be mechanically stable at room temperature (RT). In the unstable case the austenite transformed to martensite upon cold working at RT. In the stable case, as was shown by careful Mössbauer-effect spectroscopy and X-ray diffraction studies, the amount of retained austenite was not affected by the cold-working at RT, whereas some amount of the martensite was transformed into a ferromagnetic-type of austenite. Complementary studies by electron diffraction have shown that both Kordjumov-Sachs and Nishiyama crystallographic orientation relationships may exist between austenite and martensite, depending on the local molybdenum and cobalt segregational contents in the lath martensite. The appearance of ferromagnetic austenite, as well as other segregational effects observed by the Mössbauer-effect spectroscopy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号