首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重质油高效转化和优化利用是国民经济发展的重大需求,具有十分重要的现实意义和战略意义。提升管催化裂化一直是重油轻质化的重要手段,但提升管的不均匀环核结构及气固返混特性降低了重油转化率和产品选择性。相对于提升管,下行床具有近平推流流型及气固短停留时间的优点,处理重油具有潜在优势。但下行床内颗粒浓度过低且气固初始接触较差限制其推广及应用。本文综述了提高下行床颗粒浓度及改善颗粒初始分布的相关文章,指出了深入研究下行床的颗粒增浓机制及气固初始混合可以丰富下行床的基础研究并推动其工业应用。  相似文献   

2.
Reactor performance of a high flux circulating fluidized bed (CFB) downer is studied under superficial gas velocities of 3–7 m/s with solids circulation rate up to 300 kg/m2s using ozone decomposition reaction. Results show that the reactant conversion in the downer is closely related to the hydrodynamics, with solids holdup being the most influential parameter on ozone decomposition. High degree of conversion is achieved at the downer entrance region due to strong gas‐solids interaction as well as higher solids holdup and reactant concentration. Ozone conversion increases with the increase of solids circulation rate and/or the decrease of superficial gas velocity. Overall conversion in the CFB downer is less than but very close to that in an ideal plug flow reactor indicating a good reactor performance in the downer because of the nearly “ideal” hydrodynamics in downer reactors. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3412–3423, 2014  相似文献   

3.
Comparison of flow development in high density downer and riser reactors is experimentally investigated using fluid catalytic cracking particles with very high solids circulation rate up to 700 kg/m2s for the first time. Results show that both axial and radial flow structures are more uniform in downers compared to riser reactors even at very high density conditions, although the solids distribution becomes less uniform in the high density downer. Solids acceleration is much faster in the downer compared to the riser reactor indicating a shorter length of flow development and residence time, which is beneficial to the chemical reactions requiring short contact time and high product selectivity. Slip velocity in risers and downers is also first compared at high density conditions. The slip velocity in the downer is much smaller than in the riser for the same solids holdup indicating less particle aggregation and better gas‐solids contacting in the downer reactors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1172–1183, 2015  相似文献   

4.
逆向气体射流对下行床颗粒混合的影响   总被引:2,自引:0,他引:2  
下行床入口结构的研究一直被人们所重视。今在内径为0.192m的下行床中颗粒达到均匀分布的部位,沿床四周均布了三个45度方向逆流场气体射流入口,在此处设立气体入口可以使颗粒分散与气固快速接触不再同时进行。采用磷光颗粒示踪技术对下行床有逆流场射流气体存在时颗粒的轴径向混合行为进行了研究。这种逆流场射流气体对下行床颗粒的轴向混合行为无明显影响,在各操作条件下下行床内颗粒均能以接近平推流的方式运动;但该射流气体可以大大加强颗粒的径向混合,有利于气固接触,在下行床颗粒径向混合越差的操作条件下,射流气体对颗粒径向混合的影响效果越明显,下行床的这种入口结构具有良好的应用前景。  相似文献   

5.
Selective partial oxidations represent an important class of reactions in the process industry. Of particular interest is the partial oxidation of n‐butane to maleic anhydride (MAN), which is arguably the largest commercialized alkane partial oxidation process. Partial oxidation of n‐butane, which uses vanadium phosphorous oxide (VPO) as a heterogeneous catalyst, is believed to operate through a unique mechanism in which lattice oxygen oxidizes n‐butane selectively to MAN. Past work has shown that performing partial oxidation reactions in gas–solids riser configuration is realizable and commercially viable, which has lead to commercialization of this technology in the last decade. Though the riser configuration allows optimal and independent control of the oxidation and reduction steps, the riser unit suffers from solid backmixing at walls, which in turn result into lower conversion, nonoptimal selectivity and diminished overall yield of desired product. In recent years, there has been growing interest in downers involving cocurrent downflow of both solids and gas phases, hence offering relatively uniform flow characteristics. In this contribution, we explore through modeling the implications of effecting partial oxidation reactions in a downer (gas–solids cocurrent downflow) compared to that in a conventional riser reactor (gas–solids cocurrent up flow) operated under equivalent operating conditions. Further, we explore the operational space of downers for these reactions, suggesting ways for improving the productivity of downer for partial oxidation applications. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

6.
颗粒的循环特性是循环流化床研究的重点及热点之一,在建立颗粒循环时,颗粒循环由非稳态向稳态过渡。本文在循环流化床实验装置中,采用摄像法和压力检测法研究了不稳定颗粒循环条件下颗粒流动结构和各段压降的变化情况。首次发现了不稳定颗粒循环状态下的颗粒振荡循环现象及其具有的两个特征:下降段、提升段气固流动结构呈周期性变化;下降段压降pd和提升段压降pr周期性波动且pd>pr和pdr交替出现。进一步对颗粒振荡循环过程进行受力分析,建立了颗粒振荡周期的计算公式。研究还发现在颗粒藏量一定的条件下,循环气流量或颗粒循环段阀门开度大于某一临界值时才能诱发颗粒振荡循环;颗粒振荡循环周期随着循环气流量的增大而增大,与阀门开度无关。研究结果为动态颗粒循环建立过程的研究奠定了基础,有助于快速地建立颗粒的稳定循环。  相似文献   

7.
Catalytic ozone decomposition reaction was used to study the performance of a 76 mm i.d. and 5.8 m high gas–solid circulating fluidized bed (CFB) downer reactor. Optical fiber probes and an ultraviolet (UV) ozone analyzer were used to obtain comprehensive information about local solids holdup and ozone concentration profiles at different axial and radial positions at superficial gas velocity of 2–5 m/s and solids circulation rates of 50 and 100 kg/m2 s. Axial ozone concentration profiles significantly deviated from the plug-flow behavior, with most conversion occurring in the entrance region or flow developing zone of the downer reactor. Strong correlation was observed between the spatial distributions of solids and extent of reaction; higher local solids holdups cause lower ozone concentrations due to higher reaction rates. Radial gradients of the reactant (ozone) concentrations increased in the middle section of the downer, and decreased with increasing superficial gas velocity and solids circulation rate. Contact efficiency, a measure of the interaction between gas and solids indicated high efficiency in the flow developing zone and decreased with height in the fully developed region.  相似文献   

8.
A reactor model for a downer‐regenerator circulating fluidized‐bed (CFB) during the partial oxidation of n‐butane to maleic anhydride is presented. Upflow reactors (risers) suffer from severe solids back mixing and gas‐solids‐separation, in comparison down flow reactors exhibit a more uniform gas‐solids flow and reduced backmixing, resulting in narrower residence time distributions. Due to the sensitivity of the VPO catalyst to over‐reduction, downer reactors present an interesting alternative to riser reactors. The reactor models for the downer and the regenerator fluidized‐bed are coupled with reduction and oxidation kinetics for the catalyst, respectively. The influence of the solids residence time distributions for the combined system of both reactors on the oxidation state of the catalyst is explored by a novel newly developed oxygen loading distribution. Simulation results suggest the limited solids‐flux in downers restrict the maximum butane concentrations, while the scale‐up is predicted to be uncritical.  相似文献   

9.
The flow behaviors in the downer of a large-scale triple-bed circulating fluidized bed (TBCFB) gasifier cold model, which is composed of a downer (Φ 0.1 m×6.5 m), a bubbling fluidized bed (BFB, 0.75×0.27×3.4 m3), a riser (Φ 0.1 m×16.6 m) and a gas-sealing bed (GSB, Φ 0.158 m×5 m), were investigated. Sand particles with a density of 2600 kg/m3 and an average particle size of 128 μm were used as bed materials. Solids mass fluxes were in the range 113–524 kg/m2 s. Average solids holdup in the developed region of the downer increased with increasing solids mass flux. The gas seal between the riser and the downer had a large effect on the solids holdup distribution in the downer. Compared with the solids holdup in the riser, a relatively low solids holdup was formed in the downer even at high solids loadings. A pressure balance model was set up to predict the solids mass flux for this TBCFB system. It was found that the static bed height in the GSB had a great effect on the solids mass flux. The possibilities of achieving a high density solids holdup in a downer were discussed.  相似文献   

10.
《Powder Technology》2001,114(1-3):96-101
A non-isokinetic sampling method was used to study the effects of gas velocity, solids circulation rate and axial and radial positions on the local solids flux in a gas–solids downer fluidized bed. The radial profiles of solids flux are highly dependent on the axial position. The local solids flux is also dependent on the overall solids circulation rate but not dependent on the gas velocity. The solids flux profiles in the downer were also found to be quite different from those reported in the riser.  相似文献   

11.
B. Wu  L. Briens  H. Zhang 《Powder Technology》2007,178(3):187-193
Local solids concentration fluctuations were measured in a long downer reactor (0.1 m ID, 9.3 m tall) using an optical fiber probe. Axial flow development and radial flow dynamics were analyzed using both statistical and chaos methods. Core, transition and annulus regions were identified and each region showed different flow behavior. Cross-sectional averaged chaos parameters were correlated to cross-sectional averaged solids holdup to develop relationships between non-linear flow dynamics and operating conditions.  相似文献   

12.
基于强湍流分散的下行床入口结构   总被引:2,自引:2,他引:0       下载免费PDF全文
钱震  张明辉  余皓  魏飞  金涌 《化工学报》2004,55(8):1249-1255
基于对现有下行式循环流化床(下行床)气固混合入口的总结,提出下行床入口结构设计的关键原则.依据该原则设计了一种由对撞气体射流引入强湍流场来实现气固快速混合的入口结构.在内径418mm、高18m的工业示范规模下行床冷态实验平台上,采用双光路光纤密度探头、激光多普勒测速仪、微压差计和氢气稳态示踪技术对该入口结构及其后的下行床主体的气固流动、混合行为进行了考察.结果表明,与以往基于单管或多管射流的入口相比,该入口结构无需分布器就可以实现大质量流率条件下气固两相的快速均匀分布.  相似文献   

13.
与气固并流上行提升管反应器相比,气固并流下行管反应器的轴向气固返混明显降低,而径向气固混和仍然相当大,因而有利于提高气固快速反应的转化率及选择性。本文在分析下行流化床反应器内气、固混合机理的基础上,比较了有关气、固混合的研究方法及结果,并比较了提升管和下行管的不同混合现象,旨在促进对这一课题更加深入系统地研究,以适应循环床下行管反应器设计、放大和模型化的迫切要求。  相似文献   

14.
A direct comparison on solids flux was enabled by measurements obtained in a pair of riser and downer circulating fluidized bed reactors, of the same diameter, using suction probes. The operating conditions and the axial position were found to affect the solids flux in each reactor in a different manner. The solids flux in the riser were affected to a large degree by the gas velocity, in contrast with the downer where no visible effect was detected from changes in the gas velocity. The axial position has an effect on the shape of the solids flux profiles in the downer, but only small effects were observed in the riser. On the other hand, increases in overall solids flux leads to the increase of local solids flux in both the downer and the riser.  相似文献   

15.
In a downer reactor (0.1 m-I.D.x3.5 m-high), the effects of gas velocity (1.6-4.5 m/s), solids circulation rate (0–40kg/m2s) and particle size (84, 164 Μm) on the gas mixing coefficient have been determined. The radial dispersion coefficient(D r ) decreases and the radial Peclet number (Per) increases as gas velocity increases. At lower gas velocities, Dr in the bed of particles is lower than that of gas flow only, but the reverse trend is observed at higher gas velocities. Gas mixing in the reactor of smaller particle size varies significantly with gas velocity, whereas gas mixing varies smoothly in the reactor of larger particle size. At lower gas velocities, Dr increases with increasing solids circulation rate (Gs), however, Dr decreases with increasing Gs at higher gas velocities. Based on the obtained Dr values, the downer reactor is found to be a good gas-solids contacting reactor having good radial gas mixing.  相似文献   

16.
气固并行向下流动的下行床反应器比提升管具有气固接触时间短、气固速度及浓度径向分布更为均匀、气固轴向返混大大减少、易实现高固气比操作等特点。在下行床反应器小型热试装置开发过程中,为发挥下行床的技术优势,重点研究和解决了反应器出入口结构、原料雾化、高温高流通量下固体循环量测量与控制等几个关键性的工程问题,为下行床反应器的热试研究和应用开发提供了基础。  相似文献   

17.
提升管-下行床耦合反应器内颗粒混合行为   总被引:7,自引:0,他引:7       下载免费PDF全文
刘会娥  杨艳辉  魏飞  金涌 《化工学报》2002,53(3):302-306
引 言循环流化床中气固两相的流动有两种不同的方式 :提升管中为气固并流上行的逆重力场运动 ,下行床中为气固并流下行的顺重力场运动 .其差异表现为提升管内颗粒浓度、速度以及气体速度在径向上严重的不均匀 ,颗粒浓度概率密度分布以及速度的瞬时信号都表明了颗粒团 -空穴两相结构的存在[1] ,一些研究[2 ,3] 还发现提升管中颗粒的停留时间分布 (RTD)曲线存在较大的拖尾甚至出现双峰 ,研究者认为提升管内存在弥散颗粒和颗粒团两种不同的混合机理 ;下行床则比提升管大大改善 ,气固速度、颗粒浓度沿径向分布要均匀得多 ,颗粒的RTD曲线…  相似文献   

18.
下行床反应器内催化裂化过程的CFD模拟   总被引:3,自引:1,他引:2  
郑雨  魏飞  金涌 《化工学报》2003,54(8):1078-1086
耦合湍流气粒多相流模型和催化裂化集总动力学模型,建立了描述下行床内多相流动和催化裂化过程的反应器数学模型,并利用计算流体力学单元模拟软件CFX4.3对下行床内的催化裂化过程进行了数值模拟及分析.模型能预测出在工业应用中反应器内最受关注的诸多参数,如固含率、相间滑移速度、压降、气固相的加速区以及各组分浓度的分布情况.预测结果表明,气相反应的进行将导致反应器内的气粒流动行为发生较大变化,充分考虑反应与流动行为的耦合十分重要;而反应器床径的增大将导致转化率和各产物收率的下降.  相似文献   

19.
20.
赵永志  程易  丁宇龙  金涌 《化工学报》2007,58(6):1396-1403
采用计算流体力学和离散单元模型(CFD-DEM)耦合一种简单的气固催化反应模型对具有不同入口结构的二维下行床内的气粒流动和混合行为进行全床数值模拟。模拟得到了不同入口结构下行床内的多尺度气固运动状态、全床的固含、速度及反应生成物浓度分布,以及气体和颗粒在下行床内的停留时间分布,发现入口结构对反应器内的流动、混合和气固接触效率起着关键性的作用,入口气体和颗粒的不均匀分布将导致下行床内气体停留时间的宽分布以及气固接触效果的恶劣。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号