首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and equilibrium of cadmium biosorption from aqueous solutions were investigated using fresh tissues of Hydrilla verticillata. The biosorptive characteristics of cadmium ions were studied with respect to well‐established effective parameters, including pH, temperature and contact time. The biosorptive capacity of H. verticillata for cadmium increased with increasing pH. In addition, the resulting isotherms were well‐described by Langmuir and extended Langmuir models (R2 = 0.9794–0.9957 and 0.9880, respectively). The comparison between calculated and experimental qe values showed that the extended Langmuir model had a better simulation for the cadmium biosorption by H. verticillata than the Langmuir isotherm model. The equilibrium biosorption data at a constant temperature were well‐interpreted by the Langmuir model. The maximum biosorptive capacity increased from 33.54 to 37.46 mg/g when the solution temperature was increased from 278 to 298 K. Other various thermodynamic parameters were also estimated. Biosorptive equilibrium was established within approximately 20 min. Moreover, the pseudo‐second‐order equation was more appropriate in predicting biosorptive capacity than the pseudo‐first‐order equation. In practical viewpoints, the abundant and inexpensive plant biomass H. verticillata can be used as an effective and environmentally friendly biosorbent for the detoxification of cadmium from aqueous solutions. © 2012 Canadian Society for Chemical Engineering  相似文献   

2.
Dipropylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide has been impregnated on Amberlite XAD-4 resin and investigated for sorption of Ru from nitric acid medium. Equilibrium sorption data for Ru uptake were represented well by the Langmuir isotherm equation (R2 = 0.98) compared to Freundlich isotherm equation (R2 = 0.86). The maximum monolayer coverage (Q0) value of 6.25 mg/g as obtained from Langmuir isotherm was close to the experimental value (5.63 mg/g). The heterogeneity parameter (1/n) = 0.37 obtained from the slope of Freundlich isotherm indicates slight heterogeneity in sorption process. Aqueous solutions of 5% ammonia or 10% sodium hydroxide were found suitable for desorption. The method can be applied for separation of Ru from acidic waste solutions.  相似文献   

3.
Particles of two different sizes (0·105–0·295 mm and 0·84–1.00 mm diameter) of two marine algae, Sargassum fluitans and Ascophyllum nodosum, were crosslinked with formaldehyde (FA), glutaraldehyde (GA) or embedded in polyethylene imine (PEI), followed by glutaraldehyde crosslinking. They were used for equilibrium sorption uptake studies with cadmium, copper, nickel, lead and zinc. The metal uptake by larger particles (0·84–1·00 mm) was higher than that by smaller particles (0·105–0·295 mm). The order of adsorption for S. fluitans biomass particles was Pb > Cd > Cu > Ni > Zn, for A. nodosum copper and cadmium change places. Uptakes of metals range from qmax = 378 mg Pb g?1 for S. fluitans (FA, big particles), to qmax = 89 mg Zn g?1 for S. fluitans (FA, small particles) as the best sorption performance for each metal. Generally, S. fluitans is a better sorbent material for a given metal, size and modification, although there were several exceptions in which metal sorption by A. nodosum was higher. The metal uptake for different chemical modifications showed the order GA > FA > PEI. A comparison of different sorption models revealed that the Langmuir sorption model fitted the experimental data best.  相似文献   

4.
The sorption of linuron on bentonite desiccated at 110°C untreated, and acid‐treated with H2SO4 solutions over a concentration range between 0.25 M and 1.00 M from aqueous solution at 25°C has been studied by using batch experiments. In addition, column experiments were carried out with the bentonite sample treated with the 1.00 M H 2SO4 solution [B‐A(1.00)] by using two aqueous solutions of linuron of different concentrations (C=4.97 mg dm−3 and C=7.63 mg dm−3 ). The experimental data points have been fitted to the Langmuir equation in order to calculate the sorption capacities (Xm) of the samples; Xm values range from 0.02 g kg−1 for the untreated bentonite [B‐N] up to 0.20 g kg−1 for the sample acid‐treated with the 1.00 M H2 SO4 solution. The removal efficiency (R ) has also been calculated; R values ranging from 15.86% for the [B‐N] sample up to 41.54% for [B‐A(1.00)]. The batch experiments show that the acid‐treated bentonite is more effective than the natural bentonite in relation to sorption of linuron. The column experiments show that the B‐A(1.00) sample might be reasonably used in removing linuron, the column efficiency increasing from 61.8% for the C=7.63 mg dm−3 aqueous solution of linuron up to 77.6% for the C=4.97 mg dm−3 one. © 1999 Society of Chemical Industry  相似文献   

5.
《分离科学与技术》2012,47(6):1215-1230
Abstract

The potential to remove copper (II) ions from aqueous solutions using Na‐mordenite, a common zeolite mineral, was thoroughly investigated. The effects of relevant parameters solution pH, adsorbent dose, ionic strength, and temperature on copper (II) adsorption capacity were examined. The sorption data followed the Langmuir, Freundlich, and Dubinin‐Radushkevich (D‐R) isotherms. The maximum sorption capacity was found to be 10.69 mg/g at pH 6, initial concentration of 40 mg/dm3, and temperature of 40°C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) have also been evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The dynamics of the sorption process were studied and the values of rate constant of adsorption, rate constant of intraparticle diffusion were calculated. The activation energy (Ea) was found to be 11.25 kJ/mol in the present study, indicating a chemical sorption process involving weak interactions between sorbent and sorbate. The interaction between copper (II) ions and Na‐mordenite is mainly attributable to ion exchange. The sorption capacity increased with the increase of solution pH and the decrease of ionic strength and adsorbent dose. The Na‐mordenite can be used to separate copper (II) ions from aqueous solutions.  相似文献   

6.
《分离科学与技术》2012,47(10):1499-1504
The sorption of Sr2+ ions from aqueous solutions on magnetically modified fodder yeast (Kluyveromyces fragilis) cells and their subsequent desorption were studied. The Sr2+ sorption increased with increasing pH and reached a plateau between pH 4.0 and 7.0. The changes of temperature slightly influenced the sorption process. The sorption values were 19.5 mg g?1 and 53.5 mg g?1 for 10 mg L?1 and 40 mg L?1 Sr2+ solutions respectively after 20 min incubation at a pH higher than 4. The Langmuir isotherm was successfully used to fit experimental data; the maximum adsorption capacity was 140.8 mg g?1 under optimal conditions. The adsorbed Sr2+ ions can be desorbed with nitric acid (0.1 mol L?1).  相似文献   

7.
In this study Ni2+ adsorption properties of polyethyleneimine (PEI)‐attached poly(p‐chloromethylstyrene) (PCMS) beads were investigated. Spherical beads with an average size of 186 μm were obtained by the suspension polymerization of p‐chloromethylstyrene conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, PCMS beads had a specific surface area of 14.1 m2/g. PEI chains could be covalently attached onto the PCMS beads with equilibrium binding capacities up to 208 mg PEI/g beads, via a direct chemical reaction between the amine and chloro‐methyl groups. After PEI adsorption with 10% (w/w) initial PEI concentration, free amino content of PEI‐attached PCMS beads was determined as 0.91 mEq/g. PEI‐attached PCMS beads were utilized as adsorbents in the adsorption/desorption of Ni2+ ions from synthetic solutions. The adsorption process was fast; 90% of adsorption occurred within 90 min, and equilibrium was reached at around 2 h. Adsorption capacity was obtained to be 78.2 mg/g at a pH of about 6.0. The chelating beads can be easily regenerated by 0.1 M HNO3 with higher effectiveness. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2467–2473, 2002  相似文献   

8.
《分离科学与技术》2012,47(10):1566-1573
B-doped g-C3N4 was prepared in the laboratory via heating a mixture of melamine and boric acid. The synthesized material was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) analysis, which revealed the high specific surface area and large amount of active groups on the surface of B-doped g-C3N4. The sorption of cadmium from aqueous solutions by B-doped g-C3N4 was studied under equilibrium conditions in the concentration range of 0.01?5.0 mmol/L. The pH of the solution was varied over a range of 2?6. The sorption of cadmium on the material was determined to be pH-dependent, and the Lagergren-second-order kinetic model was suitable to simulate the sorption process. The maximum sorption capacity from the Langmuir model was determined to be 1.4162 mmol/g (about 159.2 mgCd/g). XPS and FTIR data suggest that cadmium ions were mainly attached to the N-H and O-H groups on the surface of B-doped g-C3N4.  相似文献   

9.
The removal of cadmium from aqueous solution by sorption on Aeromonas caviae particles was investigated in a well‐stirred batch reactor. Equilibrium and kinetic experiments were performed at various initial bulk concentrations, biomass loads and temperatures. Biosorption equilibrium was established in about 1 h and biosorption was well described by the Langmuir and Freundlich biosorption isotherms. The maximum biosorption capacity was found as 155.32 mg Cd(II) g?1 at 20 °C. The obtained sorption capacity is appreciably high for most experimental conditions; so A caviae may be considered as a suitable biosorbent for the removal of cadmium. Moreover, the sorption rate of cadmium onto A caviae particles was particularly sensitive to initial bulk concentration and solid load. A detailed analysis was conducted, examining several diffusion (external and intraparticle) kinetic models in order to identify a suitable rate expression. The results are discussed and indicate that biosorption of cadmium is a complex process that is described more correctly by more than one model. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
The sorption of 1,1′-dimethyl-4,4′bipyridilium dichloride (paraquat) on bentonite desiccated at 110°C untreated, and acid-treated with H2SO4 solutions over a concentration range between 0·25 M and 1·00 M , from aqueous solution at 30°C has been studied by using batch experiments. In addition, column experiments were carried out with the bentonite sample treated with the 1·00 M H2SO4 solution [B-A(1·00)] by using two aqueous solutions of paraquat of different concentrations (C = 29·40 mg dm−3 and C = 65·38 mg dm−3). The experimental data points have been fitted to the Langmuir equation in order to calculate the sorption capacities (Xm) of the samples; Xm values range from 1·35×105 mg kg−1 for the sample acid-treated with 0·375 M H2SO4 [B-A(0·375)] up to 1·96×105 mg kg−1 for the untreated bentonite [B-N]. The removal efficiency (R) has also been calculated; R values ranging from 44·61% for the [B-A(0·375)] sample up to 67·23% for B-N. The batch experiments show that the natural bentonite is more effective than the acid-treated bentonite in relation to sorption of paraquat. The column experiments show that the B-A(1·00) sample might be reasonably used in removing paraquat, the column efficiency increasing from 37·55% for the C = 65·38 mg dm−3 aqueous solution of paraquat up to 66·58% for the C = 29·40 mg dm−3 one. © 1997 SCI.  相似文献   

11.
Turkish lignite can be used as a new adsorption material for removing some toxic metals from aqueous solution. The adsorption of lignite (brown young coals) to remove copper (Cu2+), lead (Pb2+), and nickel (Ni2+) from aqueous solutions was studied as a function of pH, contact time, metal concentration and temperature. Adsorption equilibrium was achieved between 40 and 70 min for all studied cations except Pb2+, which is between 10 and 30 min. The adsorption capacities are 17.8 mg/g for Cu2+, 56.7 mg/g for Pb2+, 13.0 mg/g for Ni2+ for BC1 (Ilg?n lignite) and 18.9 mg/g for Cu2+, 68.5 mg/g for Pb2+, 12.0 mg/g for Ni2+ for BC2 (Beysehir lignite) and 7.2 mg/g for Cu2+, 62.3 mg/g for Pb2+, 5.4 mg/g for Ni2+ for AC (activated carbon). More than 67% of studied cations were removed by BC1 and 60% BC2, respectively from aqueous solution in single step. Whereas about 30% of studied cations except Pb2+, which is 90%, were removed by activated carbon. Effective removal of metal ions was demonstrated at pH values of 3.8–5.5. The adsorption isotherms were measured at 20 °C, using adsorptive solutions at the optimum pH value to determine the adsorption capacity. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of metal ions. The mechanism for cations removal by the lignite includes ion exchange, complexation and sorption. The process is very efficient especially in the case of low concentrations of pollutants in aqueous solution, where common methods are either economically unfavorable or technically complicated.  相似文献   

12.
Polyelectrolyte multilayer films deposited onto various substrates have been used extensively as drug delivery systems. However, little attention has been paid to the release of drugs from free‐standing polymeric films. Herein, we report the construction of thermal crosslinked free‐standing poly(acrylic acid) (PAA)/branched poly(ethyleneimine) (PEI) multilayer films composed of 25 double layers [(PAA/PEI)25] and their use in sorption/release of diclofenac sodium (DS). The (PAA/PEI)25 multilayer films were characterized by scanning electron microscopy, potentiometric titrations and Fourier transform infrared spectroscopy, while the sorption/release of DS was monitored by UV – Vis spectroscopy. The DS sorption equilibrium data were fitted with five isotherm models (Langmuir, Freundlich, Sips, Dubinin–Radushkevich, and Temkin). The maximum equilibrium sorption capacity, qm, given by the Langmuir model was 32.42 mg DS/g. The Korsmeyer–Peppas semiempirical equation showed that the release of DS from the free‐standing (PAA/PEI)25 films proceeded by pseudo‐Fickian diffusion, irrespective of the releasing media. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43752.  相似文献   

13.
In order to reduce the sorbent preparation cost and improve its volume‐based sorption capacity, the use of an inexpensive and commercially available silica gel was explored as a support to prepare a solid polyethylenimine sorbent (PEI/SG) for CO2 capture from flue gas. The effects of the pore volume and particle size of the silica gels, molecular weight of polyethylenimine and amount of polyethylenimine loaded, sorption temperature and moisture in the flue gas on the CO2 sorption capacity of PEI/SG were examined. The sorption performance of the developed PEI/SG was evaluated by using a thermogravimetric analyzer and a fixed‐bed flow sorption system in comparison with the SBA‐15‐supported polyethylenimine sorbent (PEI/SBA‐15). The best PEI/SG sorbent showed a mass‐based CO2 sorption capacity of 138 mg‐CO2/g‐sorbent, which is almost the same as that of PEI/SBA‐15. In addition, the PEI/SG gave a high volume‐based sorption capacity of 83 mg‐CO2/cm3‐sorbent, which is higher than that of PEI/SBA‐15 by a factor of 2.6. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2495–2502, 2012  相似文献   

14.
在磁性膨润土(MBent)表面接枝聚乙烯亚胺(PEI)制备了聚乙烯亚胺改性磁性膨润土(PEI/KH560/MBent),采用FTIR、VSM、XRD、TGA、EA、SEM和EDS对其进行了表征,考察了其对水溶液中Pb2+和Cu2+的吸附性能。结果表明,聚乙烯亚胺已成功接枝于磁性膨润土表面,并有效提高其对Pb2+和Cu2+吸附量;溶液初始pH对吸附量影响较大,随着pH的增大,吸附量增加。在pH=5,溶液初始质量浓度为300 mg/L,PEI/KH560/MBent对Pb2+和Cu2+吸附量分别为96.21和61.08 mg/g;吸附过程符合准二级动力学模型,吸附行为符合Langmuir吸附等温模型。热力学研究表明,吸附为自发吸热过程。经过5次循环利用后,其吸附容量仍保持初始的60%以上,表明PEI/KH560/MBent具有一定的重复利用性。  相似文献   

15.
《分离科学与技术》2012,47(13):2049-2055
Three kinds of agricultural by-products, wheat stem, corncob, and rice husk, were tested as biosorbents for cadmium removal from aqueous solution. The study was focused on the evaluation and comparison of the potential of the agriculture by-products as biosorbents of cadmium with the sorption isotherms determination. The impact of solution pH and kinetic study was also discussed. The result indicated that cadmium removal was strongly dependent on solution pH and the optimum pH range is 4.5 ~ 6.0. The sorption process was fast, and the sorption equilibrium can be attained within 60 min. The kinetic process fit well with the pseudo-second-order kinetic model. For the three kinds of biosorbents, the initial sorption rate as well as the maximum sorption capacity q max calculated from the Langmuir isotherm equation showed the following tendency: rice husk > wheat stem > corncob. The maximum sorption capacity of the three kinds of biosorbents enhanced after being base treated, especially for wheat stem and corncob. This study indicated that wheat stem, corncob, and rice husk displayed the potential to be used as biosorbents for cadmium removal from aqueous solution.  相似文献   

16.
ABSTRACT

The present study modifies the sorption isotherm for simulating the influences of initial pH and temperature variations on the cadmium sorption from contaminated water using waste foundry sand based on Langmuir, Freundlich, and Temkin models. Results proved that the Langmuir expression is able to adopt these effects by relating sorption capacity and affinity constants with pH and temperature of aqueous solution through exponential relationships (determination coefficient = 0.9375). The present model is assumed that the sorption process occurs through acidic functional groups and this is consistent with FTIR outputs. Interaction of cadmium/WFS is found to be exothermic by thermodynamic analysis.  相似文献   

17.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions using nanoparticle sorbents (TiO2, MgO, and Al2O3) with a range of experimental approaches. The maximum uptake values (sum of four metals) with multiple component solutions were 594.9, 114.6, and 49.4 mg g?1, for MgO, Al2O3, and TiO2, respectively. The sorption equilibrium isotherms were described using the Freundlich and Langmuir models. The best interpretation for experiment data was given by the Freundlich model for Cd2+, Cu2+, and Ni2+ in single- and multiple-component solutions. A first-order kinetic model adequately described the experimental data using MgO, Al2O3, and TiO2. SEM-EDX both before and after metal sorption and soil solution saturation indices (SI) in MgO nanoparticles indicated that the main sorption mechanism for heavy metals was attributable to adsorption and precipitation, whereas heavy metal sorption by TiO2 and Al2O3 adsorbents was due to adsorption. These nanoparticles may potentially be used as efficient sorbents for heavy metal removal from aqueous solutions. MgO nanoparticles were the most promising sorbents because of their high metal uptake.  相似文献   

18.
《分离科学与技术》2012,47(8):1076-1083
In this work, the macroporous anion exchange resin – Amberlite FPA51, is proposed as the effective adsorbent for the removal of Acid Blue 74 from aqueous solutions. The sorption mechanism was investigated under static conditions taking into account the phase contact time, solution pH, initial dye concentration, and temperature. The equilibrium data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The maximum monolayer capacity Q 0 was 123.8 mg/g. The adsorption kinetics was found to follow the pseudo-second order model. The sorption energy was equal to 14.5 kJ/mol and indicated that the adsorption process of the dye may be described via a chemical anion-exchange mechanism.  相似文献   

19.
Application of an agricultural waste material, rice husk, has been investigated for preparation of activated carbon. The rice husk‐activated carbon (RHAC) was successfully utilised for the removal of a cationic dye, methylene blue (MB) from aqueous solutions. The activated carbon was prepared in presence of ZnCl2 as an activating agent under inert nitrogen atmosphere. RHAC was characterised for surface area, pore structural parameters, and point zero charge (pHZPC). The activated carbon was further characterised by Fourier transformation infrared (FT‐IR) spectrometer, X‐ray diffractometer (XRD), and scanning electron microscope (SEM). The effect of different parameters such as contact time and initial concentration, adsorbent dose, and temperature on removal of the dye from aqueous solutions was investigated. The experimental data fitted well in both the Freundlich and Langmuir isotherm models. The maximum adsorption capacity for MB was found to be 9.73 mg g−1 at 303 K. During the study of effect of adsorbent dose, almost a 100% removal was achieved at a higher dose of RHAC. Most of the experiments were carried out at an initial concentration of MB of 60 mg/L and at 303 K. Different thermodynamic parameters, viz., changes in free energy (G°), enthalpy (H°), and entropy (S°) have also been determined to explain feasibility of the process of removal. The sorption of MB on RHAC was found to be feasible, spontaneous, and endothermic in nature.  相似文献   

20.
Microsphere polymeric materials containing β-cyclodextrin (β-CD) and poly(acrylic acid) (PAA) with tunable morphologies were prepared in order to improve their sorption characteristics in aqueous solution. The microsphere polymeric materials were prepared using a (water/oil) micro-emulsion-evaporation technique to condense β-cyclodextrin (β-CD) with PAA at various comonomer ratios and mixing speeds. The β-CD microsphere copolymers were characterized using FTIR, TGA, DSC, SEM, elemental (C and H) microanalyses, and solid state 13C-NMR spectroscopy. The sorption properties of the polymeric materials at 295 K in aqueous solution containing p-nitrophenol (PNP) were studied using a dye-based method with UV–Vis spectrophotometry at pH 4.6 and 10.3. The sorption isotherms of copolymer/PNP systems were evaluated with various isotherm models (e.g., Langmuir, BET, Freundlich, and Sips). The Sips isotherm showed the best overall agreement with the experimental results and the sorption parameters provided estimates of the sorbent surface area (12.0–331 m2/g) and the sorption capacity (Qm = 0.359–2.20 mmol/g at pH = 4.6; Qm = 0.070–0.191 mmol/g at pH = 10.3) for the microsphere copolymer/PNP systems in aqueous solution. The nitrogen adsorption properties of the microporous copolymers in the solid state were obtained at 77K with BET surface areas ranging from 0.275 to 4.47 m2/g. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号