首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Experimental data are reported regarding the dynamics of the blow molding process, including parison formation, growth, and inflation. These data have been obtained with the aid of high speed cinematography and pinch mold experiments, in conjunction with two commercial blow molding polyethylene resins. It is shown that pinch mold experiments alone do not yield accurate data regarding thickness and diameter swell. Furthermore, the inflation process involves decreasing rates of inflation with time, as a result of the rise in viscosity due to the cooling of the parison during inflation. Mathematical procedures are proposed for a first-order estimation of parison length and swell as a function of time and the inflation behavior after clamping. In the absence of more dependable basic procedures, the proposed treatment is employed to estimate the effective transient swell functions for the parison using experimental data obtained under the specified conditions. The mathematical treatment is extended to determine the thickness distribution of the bottle. Good agreement is obtained between experimental and calculated results.  相似文献   

2.
挤出吹塑中型坯自由吹胀的动力学分析   总被引:2,自引:0,他引:2  
聚合物挤出吹疗程 型坯的自由吹胀受到多方面因素的影响。采用动力学方法对此进行了研究。模拟了史胀过程听型坯轮廓变化, 吹胀压力,材料模量,型坯初始壁厚对此过程的影响。  相似文献   

3.
3D挤出吹塑型坯吹胀的数值模拟   总被引:1,自引:0,他引:1  
采用超弹本构模型对挤出吹塑型坯吹胀进行了3D数值模拟,得到了型坯在吹胀过程中的型坯轮廓曲线分布以及吹胀完毕时的型坯壁厚分布,模拟的结果与文献的实验结果相吻合;探讨了材料的性能、初始条件和吹胀压力等工艺条件对吹胀完毕后的壁厚分布影响,这为在实际生产获得最佳的加工工艺参数提供了依据。  相似文献   

4.
挤出吹塑型坯吹胀的CAD/CAE技术   总被引:1,自引:0,他引:1  
对挤出吹塑型坯吹胀过程的CAD/CAE技术进行了初步研究。此技术可通过对吹塑CAD几何造型,CAD/CAE间信息传递,以及CAE分析的集成,实现对挤出吹塑型坯吹胀成型工艺过程的模拟和分析。最后用实例验证了此技术的可行性,为塑料制品的设计、材料选择、模具设计、吹塑成型工艺的制定及吹塑成型工艺过程的控制提供了科学依据。  相似文献   

5.
Parison free inflation behavior, associated with the extrusion blow molding process, is considered both experimentally and theoretically. Experimental observations indicate1 that the parison assumes a rather complex shape under conditions of unrestricted inflation. In particular, the time-dependent shape is markedly ellipsoidal rather than cylindrical in nature. This nonuniform behavior, however, becomes more prominent in relation to the entire length as the parison-length-to-diameter ratio is decreased. Based on the experimental observations, a simplified analytical treatment of the free inflation of a viscoelastic parison is presented. The theoretical results illuminate the influence of material properties and process conditions on the inflation process. Expectedly, inflation is enhanced by an increase in the pressure driving force as well as by a decrease in viscosity. However, melt elasticity is also found to exert a significant influence on the inflation behavior. Moreover, the theoretical analysis suggests that the initial parison dimensions play a central role in controlling the inflation process.  相似文献   

6.
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K‐BKZ integral constitutive equation. An unsteady die‐swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three‐dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex‐shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub‐processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions.  相似文献   

7.
Optimization of final part thickness distributions is crucial in the extrusion blow molding process in order to minimize resin usage. Prediction of part thickness distributions from basic process and material parameters would be ideal. However, attempts to do so have been unsuccessful, largely because of the inability to predict parison thickness profiles. One must therefore resort to measurement of the parison thickness profile and estimation of the final part thickness distribution by computational methods. This paper describes a new technique for the noncontact estimation of parison thickness profiles in continuous extrusion blow molding. The method accounts for sag and requires no previous knowledge of rheological data. It can be employed on-line for the purposes of process monitoring and control. The approach is based on the measurement of the parison length evolution with time during extrusion, the parison diameter profile, the flow rate, and the melt temperature gradient along the length of the parison. These parameters are utilized in conjunction with a theoretical approach that describes the extrusion of a parison under the effects of swell, sag, and extrusion into ambient conditions. Results are presented for three resins of various molecular weight distributions. The degree of sag is minimal at the top and bottom of the parison, and reaches a maximum near the center of the parison. Results are also presented to demonstrate the versatility of the method under other process conditions, such as varying flow rate, die temperature, and die gap.  相似文献   

8.
The extrusion blow moulding process is becoming increasingly important in the polymer industry. Parison programming is a crucial component of the extrusion blow moulding process, since it allows for the optimization of resin usage in a given part. However, the inflation of programmed (variable thickness) parisons is very complex and is not a well understood phenomenon. The goal of this work is to present some experimental results demonstrating the effects of melt temperature on the inflation of programmed parisons. The inflation of parisons into a non-axisymmetric motor oil bottle is considered. Four parison thickness profiles are studied. These are (i) low magnitude constant thickness, (ii) high magnitude constant thickness, (iii) one step high to low magnitude thickness and (iv) two step low to high to low magnitude thickness. Three melt temperatures were used; 180, 200 and 220°C.  相似文献   

9.
Parison formation and inflation behavior of three polyamide 6 resins during extrusion blow molding were investigated using cinematography, a transparent mold, a pinch-off mold and a modified blow pin, which allowed the pressure inside the parison to be determined during inflation. The glass fiber filled polyamide exhibited negligible extrudate swell and significant drawdown, whereas polyolefin modified polyamide exhibited appreciable extrudate swell and relatively small drawdown effects. The inflation behavior of the polyolefin modified polyamide was similar to the behavior of conventional blow molding grade polyolefins, whereas the unmodified and glass filled polyamides exhibited different inflation characteristics. Their inflation behavior at different internal pressures was characterized by decreasing and increasing Hencky strain rates with inflation time at high and low internal blow pressures, respectively. The characterized parison formation and inflation behavior of the polyamides emphasize the importance of rigorous blow moldability experiments and the difficulties associated with linking various rheological material functions to the blow moldability of modified polyamides.  相似文献   

10.
In today's blow molding of complex parts, an optimal resin distribution is critical to a successful operation. These goals are mostly attained through a technique known as parison programming. The process involves varying the die gap during extrusion and therefore results in a parison having a variable thickness along its length. The subsequent inflation of a variable thickness parison is a complex phenomenon involving the interaction of many process variables. The final thickness distribution and inflation patterns were obtained for various programmed parisons. Constant, one step, two step, and sinusoidal thickness parisons were studied. The inflation patterns were monitored by employing a transparent mold in conjunction with a video camera. The experimental data indicated the presence of an oscillatory inflation pattern for some of the variable thickness parisons. The experimental final part thickness distribution for these cases was highly nonlinear. Theoretical predictions of the final thickness distribution were also obtained for some of the cases. The simulation is based on the inflation of a Mooney-Rivlin hyperelastic material. A wide range of deformation is accounted for by introducing an evolutionary Mooney constant, dependent on the level of deformation.  相似文献   

11.
Control over final part thickness distributions in extrusion blow molding would be very useful in resin optimization. An on-line measurement is essential for process monitoring and control of the part dimensions. Excessive resin usage results in material waste and increased cycle times because of increased cooling requirements. An inadequate thickness results in decreased mechanical strength, especially in regions along the part where large blow ratios or complex geometries exist. Neural networks are investigated as a method for the on-line prediction of the final part distribution from the parison dimensions. The purpose of this work is to demonstrate the feasibility, for preliminary use, of neural networks for this application. The network inputs include the initial parison thickness and tempera-ture profiles, the bottle mold geometry and a rheological parameter representative of the material. Varying blow-up ratios are obtained from the bottle mold geome-try. The network accesses data from a pool of eighty data sets for the training sequence. The data sets are broadly distributed with regard to the operating conditions, so as to give the network a wide range of applicability. The simulations are performed on data sets not present in the access pool used for training.  相似文献   

12.
《国际聚合物材料杂志》2012,61(3-4):201-215
Abstract

An analysis for describing parison (cylindrical) inflation behavior in the extrusion blow molding process is presented. A general growth equation is developed starting from the basic conservation principles. Assuming the polymer melt constituting the parison to behave as a purely viscous Generalized Newtonian Fluid, the effect of different process and material parameters on the inflation process is investigated. From the numerical results, it is inferred that the growth behavior for inelastic liquid exhibits a general tendency of approaching exponential (constant stretch rate) growth as elapsed time progresses. Besides, the initial parison dimensions are determined to play a very significant role in governing the inflation process. Moreover, the inertial contribution owing to fluid motion is found to exert an appreciable influence on the growth dynamics, and hence cannot be neglected without introducing severe approximations in the analytical development.  相似文献   

13.
The most critical stage in the extrusion blow‐molding process is the parison formation, as the dimensions of the blow‐molded part are directly related to the parison dimensions. The swelling due to stress relaxation and sagging due to gravity are strongly influenced by the resin characteristics, die geometry, and operating conditions. These factors significantly affect the parison dimensions. This could lead to a considerable amount of time and cost through trial and error experiments to get the desired parison dimensions based upon variations in the resin characteristics, die geometry, and operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow‐molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of various high‐density polyethylene resin grades on parison dimensions. The resins were tested using three different sets of die geometries and operating conditions. The target parison length was achieved by adjusting the extrusion time for a preset die gap opening. The finite element software BlowParison® was used to predict the parison formation, taking into account the swell and sag. Good agreements were found between the predicted parison dimensions and the experimental data. POLYM. ENG. SCI., 2009. Published by Society of Plastics Engineers  相似文献   

14.
During suction blow molding process, the extruded parison undergoes twisting deformation within the mold cavity, as the air drawing flow around the deforming parison exerts non‐uniform shear stresses on its surface. Such twisting deformation can compromise the specific radial and circumferential variations in parison thickness that are intentionally generated during extrusion. This research is devoted in developing a fluid–structure interaction model for predicting parison deformation during suction blow molding process, with a specific emphasis on the suction stage. A fluid flow model, based on Hele‐Shaw approximations, is formulated to simulate the air drag force exerted on the parison surface. The rheology of the material of the parison is assumed to obey the viscoelastic K‐BKZ model. As the suction process also involves the sliding of the parison within the mold cavity, a modified Coulomb's law of dry friction is used to simulate the frictional contact between parison and mold. The numerical results of this study allowed identifying a clear correlation between the twisting deformation undergone by the parison during the suction stage, also observed experimentally and the design parameters, namely, the air drawing speed, the geometry of the duct mold cavity, and the parison/mold eccentricity. POLYM. ENG. SCI., 59:418–434, 2019. © 2018 Her Majesty the Queen in Right of Canada  相似文献   

15.
The parison extrusion and the effects of post-extrusion swelling and sagging in the blow molding process have been studied by several authors and some qualitative relationships with rheological parameters have been attempted. The aim of this work is to show that, under some simplifying assumptions, the relevant rheological parameters—the swelling of the parison and its tensile compliance—can be directly determined from the viscoelastic analysis of the process. The reliability of the model has been tested by experiments carried out by the pinch-off mold technique which provides the parison weight profile as a function of both previous extrusion history and mold closing delay. First of all it has been shown that the proposed model is suitable to represent the data. The swelling behavior shows the expected dependence on time and shear rate and the long-time swelling data compare well with those determined by capillary extrusion experiments. It has also been found that the measured tensile compliance is of the same order of magnitude as that determined by conversion of tensile relaxation experiments; however, in the blow molding experiments the compliance of the parison decreases with increasing extrusion shear rate, i.e., by increasing the induced anisotropy of the polymer. As rheological examples, the performance displayed on both industrial and laboratory machines is discussed for three high density polyethylenes.  相似文献   

16.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

17.
An experimental study was carried out to study and characterize the capillary extrudate swell and parison swell behavior in extrusion blow molding of two commercial blow molding grade high density polyethylene resins. The capillary extrudate swell behavior of these resins were determined employing a capillary rheometer and a special thermostatting chamber. Parison swell behavior was determined using an Impco A13-R12 reciprocating screw blow molding machine in conjunction with cinematography and pinch-off. The experimental conditions under which capillary extrudate and parison swell data can be related are elucidated. Excellent agreement is found between the area swell values determined on the basis of capillary and parison swell experiments.  相似文献   

18.
The simulation of the parison formation process in blow molding has been studied. The flow field was divided into two regions, namely, the extrudate swell region near the die lip and the parison formation region after the exit swell. In the swell region, we predicted the swelling ratio and residual stress distribution for high Weissenberg numbers for steady planar well using the 1-mode Giesekus model. In the parison formation region, the flow is assumed to be an unsteady unaxial elongational flow including drawdown and recoverable swell and is modeled using the 10-mode Giesekus model. We calculated the time course of parison length and thickness distribution, and compare the calculation results of parison length with experimental data. It was found that the predicted values agreed rather well with the experimental values. The calculation results could especially predict the shrink-back, which is the phenomenon where the parison length becomes shorter after the cessation of extrusion, and it was found tat this was caused by the recoverable swell of the parison, which depends on the tensile stress generation in the die. Various flow rates and die geometries were studied and confirmed the reliability and usefulness of the method.  相似文献   

19.
塑料挤出吹塑中型坯成型模拟采用的本构方程   总被引:1,自引:0,他引:1  
陆松  黄汉雄 《中国塑料》2003,17(9):39-42
型坯成型是塑料挤出吹塑中的一个重要阶段。对型坯成型阶段的数值模拟可分为两种方法:一种是将型坯机头内的聚合物熔体看作牛顿流体,另一种是将其看作粘弹性流体。在对粘弹性流体进行分析时,用到了微分型和积分型的本构方程,对此进行了较系统的介绍。  相似文献   

20.
以挤出吹塑中空制品品质(制品壁厚分布、制品质量)和生产效率为最终的优化目标,成型工艺参数为设计变量,基于混合人工神经网络和遗传算法建立了挤出吹塑中空成型工艺参数的多目标优化系统。此方法不仅可确定满足实际生产需要的初始成型工艺参数,减少用于确定初始成型工艺参数的时间,而且为挤出吹塑中空成型的工艺参数的确定提供了理论依据,为挤出吹塑中空成型生产的全自动化的实现奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号