首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
李凡 《计算机应用研究》2021,38(2):549-552,558
目前针对恶意Android应用的静态检测方法大多基于对病毒哈希值的分析与匹配,无法迅速检测出新型恶意Android应用及其变种,为了降低现有静态检测的漏报率,提高对新型恶意应用的检测速度,提出一种通过深度网络融合模型实现的恶意Android应用检测方法。首先提取反编译得到的Android应用核心代码中的静态特征,随后进行代码向量化处理,最后使用深度学习网络进行分类判别。该方法实现了对恶意应用高准确度的识别,经过与现存方法的对比分析,验证了该方法在恶意代码检测中的优越性。  相似文献   

2.
3.
针对Android平台恶意应用的检测技术,提出一种基于集成学习投票算法的Android恶意程序检测方法MASV(Soft-Voting Algorithm),以有效地对未知应用程序进行分类。从已知开源的数据集中获取了实验的基础数据,使用的应用程序集包含213 256个良性应用程序以及18 363个恶意应用程序。使用SVM-RFE特征选择算法对特征进行降维。使用多个分类器的集合,即SVM(Support Vector Machine)、[K]-NN[(K]-Nearest Neighbor)、NB(Na?ve Bayes)、CART(Classification and Regression Tree)和RF(Random Forest),以检测恶意应用程序和良性应用程序。使用梯度上升算法确定集成学习软投票的基分类器权重参数。实验结果表明,该方法在恶意应用程序检测中达到了99.27%的准确率。  相似文献   

4.
传统的机器学习算法无法有效地从海量的行为特征中选择出有本质的行为特征来对未知的Android恶意应用进行检测。为了解决这个问题,提出DBNSel,一种基于深度信念网络模型的Android恶意应用检测方法。为了实现该方法,首先通过静态分析方法从Android应用中提取5类不同的属性。其次,建立深度信念网络模型从提取到的属性中进行选择和学习。最后,使用学习到的属性来对未知类型的Android恶意应用进行检测。在实验阶段,使用一个由3 986个Android正常应用和3 986个Android恶意应用组成的数据集来验证DBNSel的有效性。实验结果表明,DBNSel的检测结果要优于其他几种已有的检测方法,并可以达到99.4%的检测准确率。此外,DBNSel具有较低的运行开销,可以适应于更大规模的真实环境下的Android恶意应用检测。  相似文献   

5.
6.
随着Android系统的广泛应用,Android平台下的恶意应用层出不穷,并且恶意应用躲避现有检测工具的手段也越来越复杂,亟需更有效的检测技术来分析恶意行为。文中提出并设计了一种基于N-gram的静态恶意检测模型,该模型通过逆向手段反编译Android APK文件,利用N-gram技术在字节码上提取特征,以此避免传统检测中专家知识的依赖。同时,该模型使用深度置信网络,能够快速而准确地学习训练。通过对1267个恶意样本和1200个善意样本进行测试,结果显示模型整体的检测准确率最高可以达到98.34%。实验进一步比较了该模型和其他算法的检测结果,并对比了相关工作的检测效果,结果表明该模型有更好的准确率和鲁棒性。  相似文献   

7.
8.
在分析Android系统总共165个权限的基础上,提炼出30个理论上可以获取Android系统隐私资源的恶意权限组合。提出一种针对应用类别的基于恶意权限组合的恶意值、待测应用恶意权值、恶意阈值的窃取隐私恶意应用检测方法。通过实验验证了该方法的正确性和准确率,并在Android系统中得以实现。  相似文献   

9.
利用机器学习或深度学习算法进行 Android 恶意应用的检测是当前主流方法, 取得了一定的效果。然而, 多数方法仅关注应用的权限和敏感行为等信息, 缺乏对敏感行为协同的深度分析, 导致恶意应用检测准确率低。对敏感行为协同深度分析的挑战主要有两个: 表征敏感特征域关联和基于敏感特征域关联的深层分析与检测。本文提出了一种新的 Android 恶意应用检测模型 GCNDroid, 基于敏感特征域关联关系图描述的应用程序主要敏感行为以及敏感行为之间的域关联关系来有效地检测Android 恶意应用。首先, 为了筛选出对分类更加敏感的特征, 同时减少图节点的数量, 加速分析, 本文构建了敏感特征字典。接着, 定义类或者包为域, 在同一个域中的敏感特征具有域关联关系。通过敏感特征所在域的相对范围, 构造敏感特征之间不同的域关联权重, 生成敏感特征域关联关系图, 敏感特征域关联关系图可以准确表征特定功能模块中的敏感行为, 以及敏感行为之间的完整关系。然后, 基于敏感特征域关联关系图, 设计基于图卷积神经网络的深度表征, 构建 Android 恶意应用检测模型GCNDroid。在实践中, GCNDroid 还可以利用新的敏感特征不断更新, 以适应移动应用程序新的敏感行为。最后, 本文对GCDNroid 进行了系统评估, 召回率、调和平均数、 AUC 等重要指标均超过 96%。与传统的机器学习算法(支持向量机和决策树)和深度学习算法(深度神经网络和卷积神经网络)相比, GCNDroid 取得了预期的效果。  相似文献   

10.
近年来Android平台遭到了黑客们的频繁攻击。随着安卓恶意应用的增多,信息泄露以及财产损失等问题也愈发严重。首先测试了恶意应用与正常应用在图片和界面元素两类资源特征上的差异,提出了一种结合资源特征的Android恶意应用检测方法——MalAssassin。该方法对APK进行静态分析,提取应用的8类共68个特征,包括综合了其他研究所提取的权限、组件、API、命令、硬编码IP地址、签名证书特征,并且结合了所发现的图片与界面元素两类资源特征。这些特征被映射到向量空间,训练成检测模型,并对应用的恶意性进行判定。通过对53 422个正常应用以及5 671个恶意应用的测试,MalAssassin达到了99.1%的精确度以及召回率。同时,资源特征的引入使得MalAssassin在不同数据集上具有较好的适应性。  相似文献   

11.
苏志达  祝跃飞  刘龙 《计算机应用》2017,37(6):1650-1656
针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法。首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量;然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络;最后,利用生成的深度学习网络对待测安卓应用程序进行检测。实验结果表明,在使用相同测试集的情况下,DeepDroid算法的正确率比支持向量机(SVM)算法高出3.96个百分点,比朴素贝叶斯(Naive Bayes)算法高出12.16个百分点,比K最邻近(KNN)算法高出13.62个百分点。DeepDroid算法结合了安卓应用程序的静态特征和动态特征,采用了动态检测和静态检测相结合的检测方法,弥补了静态检测代码覆盖率不足和动态检测误报率高的缺点,在特征识别的部分采用DBN算法使得网络训练速度得到保证的同时还有很高的检测正确率。  相似文献   

12.
Android 系统正日益面临着恶意软件的攻击威胁。针对支持向量机等传统机器学习方法难以有效进行大样本多分类的恶意软件检测,提出一种基于深度神经网络的Android恶意软件检测与家族分类方法。该方法在全面提取应用组件、Intent Filter、权限、数据流等特征基础上,进行有效的特征选择以降低维度,基于深度神经网络进行面向恶意软件的大样本多分类检测。实验结果表明,该方法能够进行有效检测和分类,良性、恶意二分类精度为 97.73%,家族多分类精度可达到 93.54%,比其他机器学习算法有更好的分类效果。  相似文献   

13.
基于Android系统恶意软件检测的全流程,对比和分析了国内外的研究现状和进展,从样本获取的角度介绍了标准化数据样本的来源及作用,从特征选择的角度阐述了特征选择应遵循的原则;重点从检测方法的角度对比和分析了各种检测方法的优缺点,同时总结和归纳了特征数据集筛选方法以及实验结果评估方法。最后结合实际应用和需求,展望了未来Android恶意软件检测方法的研究和发展方向。  相似文献   

14.
针对当前Android平台资源受限及恶意软件检测能力不足这一问题,以现有Android安装方式、触发方式和恶意负载方面的行为特征为识别基础,构建了基于ROM定制的Android软件行为动态监控框架,采用信息增益、卡方检验和Fisher Score的特征选择方法,评估了支持向量机(SVM)、决策树、k-邻近(KNN)和朴素贝叶斯(NB)分类器四类算法在Android恶意软件分类检测方面的有效性。通过对20916个恶意样本及17086个正常样本的行为日志的整体分类效果进行评估,结果显示,SVM算法在恶意软件判定上准确率可以达到93%以上,误报率低于2%,整体效果最优。可应用于在线云端分析环境和检测平台,满足海量样本处理需求。  相似文献   

15.
由于智能手机使用率持续上升促使移动恶意软件在规模和复杂性方面发展更加迅速。作为免费和开源的系统,目前Android已经超越其他移动平台成为最流行的操作系统,使得针对Android平台的恶意软件数量也显著增加。针对Android平台应用软件安全问题,提出了一种基于多特征协作决策的Android恶意软件检测方法,该方法主要通过对Android 应用程序进行分析、提取特征属性以及根据机器学习模型和分类算法判断其是否为恶意软件。通过实验表明,使用该方法对Android应用软件数据集进行分类后,相比其他分类器或算法分类的结果,其各项评估指标均大幅提高。因此,提出的基于多特征协作决策的方式来对Android恶意软件进行检测的方法可以有效地用于对未知应用的恶意性进行检测,避免恶意应用对用户所造成的损害等。  相似文献   

16.
Recent theoretical and practical studies have revealed that malware is one of the most harmful threats to the digital world. Malware mitigation techniques have evolved over the years to ensure security. Earlier, several classical methods were used for detecting malware embedded with various features like the signature, heuristic, and others. Traditional malware detection techniques were unable to defeat new generations of malware and their sophisticated obfuscation tactics. Deep Learning is increasingly used in malware detection as DL-based systems outperform conventional malware detection approaches at finding new malware variants. Furthermore, DL-based techniques provide rapid malware prediction with excellent detection rates and analysis of different malware types. Investigating recently proposed Deep Learning-based malware detection systems and their evolution is hence of interest to this work. It offers a thorough analysis of the recently developed DL-based malware detection techniques. Furthermore, current trending malwares are studied and detection techniques of Mobile malware (both Android and iOS), Windows malware, IoT malware, Advanced Persistent Threats (APTs), and Ransomware are precisely reviewed.  相似文献   

17.
Android应用普遍具有比所属类型更多的功能,需要获取更多的权限,过多的权限可能带来一定的安全隐患。针对这类问题,提出一种基于元信息的Android恶意软件检测方法。首先,通过对Android应用程序描述进行LDA主题提取,实现数据降维,使用K-means聚类算法按照功能类型对应用程序分组;然后,对属于同一功能类型的所有应用程序提取其权限信息,以权限特征为研究对象,使用KNN算法进行Android恶意软件的分类检测。实验结果获得94.81%的平均准确率,证明了方法的有效性和高准确率。  相似文献   

18.
谢丽霞  李爽 《计算机应用》2018,38(3):818-823
针对Android恶意软件检测中数据不平衡导致检出率低的问题,提出一种基于Bagging-SVM(支持向量机)集成算法的Android恶意软件检测模型。首先,提取AndroidManifest.xml文件中的权限信息、意图信息和组件信息作为特征;然后,提出IG-ReliefF混合筛选算法用于数据集降维,采用bootstrap抽样构造多个平衡数据集;最后,采用平衡数据集训练基于Bagging算法的SVM集成分类器,通过该分类器完成Android恶意软件检测。在分类检测实验中,当良性样本和恶意样本数量平衡时,Bagging-SVM和随机森林算法检出率均高达99.4%;当良性样本和恶意样本的数量比为4:1时,相比随机森林和AdaBoost算法,Bagging-SVM算法在检测精度不降低的条件下,检出率提高了6.6%。实验结果表明所提模型在数据不平衡时仍具有较高的检出率和分类精度,可检测出绝大多数恶意软件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号