首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High pressure CO2 sorption data in polycarbonate (PC) are reported as a function of temperature and thermal history. The bulk physical structural changes produced by annealing at 125 and 135°C were monitored by density and thermal property changes. The sorption data are analyzed by the dual sorption model which assumes the sorption isotherm to consist of Henry's law and Langmuir sorption terms; The Langmuir capacity term C of PC can be grossly correlated with the reported volumetric parameters of the polymer. This excess volume interpretation of C has found support in the good correlation between C and the corresponding enthalpy relaxation from parallel Differential Thermal Analysis of the samples. Density measurements provide gross evidence of the free volume interpretation of C. The experimental uncertainties in the data compromise a more critical test of the relationship between C and the density of annealed samples.  相似文献   

2.
The univariant element, Q1 P0, and the multivariant elements, QP0 and R P0, are compared for the numerical simulation of the flow in extrusion dies. The pressure distribution obtained by using the Q1 P0 element was found to be afflicted with the checkerboard pressure mode. On the other hand, the multivariant elements, Q P0 and R P0, gave accurate and physically reasonable velocity and pressure distributions. The computed values of the pressure drop across extrusion dies matched well with the pressure drop determined experimentally.  相似文献   

3.
The air separation through triheptyl cellulose (THC)/ethyl cellulose (EC) blend membranes containing no more than 20 wt % THC at the temperature range from 298 to 358 K was investigated using a variable volume method. The air-separation ability for the THC/EC membranes were greater than that for the THC-free pure EC membrane. P for the THC/EC membranes was between 1.06–8.89 × 10?9 cm3 (STP) cm/cm2 s cmHg and P/P 3.04–3.66. The THC/EC membrane showed a unique trend in its P/P ? P relationship, i.e., the magnitude of P/P increased simultaneously with that of P. The THC/EC membrane yielded a maximum oxygen concentration in the oxygen-enriched air (OEA) of 39.5% at an OEA flux of 6.99 × 10?4 cm3 (STP)/s cm2 for a pressure difference of 0.43 MPa at 358 K. After 300 h of measurement at 0.40 MPa and 313 K, the efficiency of the concentrating oxygen was almost constant. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
A nucleation theory for strain-induced crystallization is formulated to explain and to predict the effects of molecular strain on crystallization kinetics and crystallite size. Unlike any current theories that have based their formulations on some assumed extended-chain line nuclei or folded-chain crystals, the present theory avoids all assumptions concerning the crystal morphology. It is based on experimental findings which indicate limited crystal growth in the strain direction, following a reciprocal dependence of crystal thickness on supercooling ΔT. (ΔT = T, ? T, where the equilibrium melting temperature, T, is a variable dependent on degree of molecular strain prior to strain-induced crystallization.) It is predicted that the logarithm of the nucleation rate, No, is dependent on (T)2/TT) or T/TT), and that the critical nucleus thickness l*o is shown to be proportional to TT. In addition, expressions are also presented, including examples, to show the dependence of No, l*o and Tom on degree of molecular strain, ?, or melt entropy reduction, Δs′. Our analysis predicts that, on comparing a polyethylene crystallized in the presence of strain to one crystallized in the absence of strain at 130°C, an increase in “coil” dimension of less than about 50 percent can bring about a 104 fold increase in heterogeneous nucleation rate, a 30–40 percent reduction in critical nucleus thickness and a 10°C increase in equilibrium melting temperature. These results will be discussed and compared with available experimental evidence.  相似文献   

5.
Oxidative coupling of methane over a La2O3/CaO catalyst was investigated in laboratory-scale fluidized-bed reactors (ID = 5 and 7 cm) in the following range of reaction conditions: T = 700 – 880°C, P = 41 – 72 kPa and P = 6 – 29 kPa. The maximum C2+ selectivity and yield amounted to 73.8% (T = 800°C, X = 13.1%, Y = 9.7%) and 16.0% (T = 840°C, X = 34.0%, S = 47.2%), respectively. Axial gas concentration profiles revealed that C2+ selectivity was not only influenced by oxidative consecutive reactions, but also by steam reforming of ethylene. When diluting the catalytic bed (mcat = 145 g) with quartz (m = 200 and 400 g), a slight decrease of the selectivity (1–2%) was observed. The dilution of the feed gas with nitrogen only led to only a small increase (< 2%) of the C2+ selectivity.  相似文献   

6.
A study of orientation development in polystyrene film by biaxial stretching is described. Stretch ratios up to 7.2 × 7.2 were used. Mechanical properties of polystyrene films were correlated with the level of molecular orientation developed by uniaxial or biaxial stretching. Sensitivity of the mechanical properties to change due to development of orientation varied as follows: Yield strength < Young's modulus < Tensile strength < Elongation to break. Brittle to ductile transition phenomena were observed at certain orientation values in the orientation triangle diagram. The transition occurs when f × f ~ 0.0025 for biaxially oriented and f ~ 0.015 in the machine direction for uniaxially oriented films. SEM photomicrographs show that the fracture surfaces of ductile failures exhibit many fibrils while brittle failures exhibit no fibrils.  相似文献   

7.
Mean permeability coefficients for CH4 and CO2 ( and ) in cellulose acetate (CA, DS = 2.45) were determined at 35°C (95°F) and at pressures up to about 54 atm (800 psia). The measurements were made with pure CH4 and CO2 as well as with CH4/CO2 mixtures containing 9.7, 24.0, and 46.1 mol % CO2. In the measurements with the pure gases, was found to decrease with increasing pressure, as expected from the “dual-mode” sorption model. By contrast, passes through a minimum and then increases with increasing pressure, probably due to the plasticization (swelling) of CA by CO2. The values of and determined with the mixtures containing 9.7 and 24.0 mol % CO2 decrease with increasing total pressure; this behavior is adequately described by the extended “dual-mode” sorption model for mixtures. By contrast, the values of and obtained with the mixture containing 46.1 mol % CO2 pass through a minimum and then increase as the total pressure is raised, probably also due to the plasticization of CA by CO2. The CO2/CH4 selectivity (≡/) of the CA membrances decreases with increasing total pressure and, at constant pressure, decreases with increasing CO2 concentration in the feed mixture. The effects of exposing the CA membranes to high-pressure CO2 prior to the permeability measurements (“conditioning” effects) on and have also been studied. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The ammoxidation of propylene on Fe-Bi-P mixed oxide catalyst was studied at 500 °C by the pulse reaction technique, to examine the effects of P(P = 0–4) and P (P/P = 0–3) on the catalyst activity. Since the ammoxidation of propylene proceeds through consumption of oxygen from the catalyst even in the absence of oxygen, the reduction of catalyst progresses with the number of O2-free pulse, losing its activity. In the presence of oxygen, however, the conversion of propylene and the selectivities of acrylonitrile, acetonitrile, CO2, and CO vary with the pulse number, but settle to some steady values corresponding to P/P. It is also found that the conversion and the selectivities depend on the oxidation state of the catalyst, the latter also depending on P/P in the reactants, and that the catalyst working in the flow system may be being reduced to some extent.  相似文献   

9.
Surface fluorination of poly(trimethylsilylpropyne) (PTMSP) membranes by CF4 plasma was studied. The surface fluorination of the membranes was carried out in an atmosphere of CF4 in a capacitively coupled discharge apparatus with external electrodes. Dramatic increase in selectivity (P/P) was observed. The effect of fluorination conditions such as duration of treatment and discharge power on the permeabilities of the membranes was studied. X-ray photoelectron spectrometric data of modified PTMSP membranes showed a drastic alternation in the surface layer. The P and P/P of the membranes were observed to be dependent on the F/C atomic ratio. At F/C > 1, the P/P value of the membranes could be more than four. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The complex Young's modulus, E*(ω), and the complex strain-optical coefficient, O*(ω), of poly(ether sulfone) (PES), polysulfone (PSF), and polyethermide (PEI), were measured over the frequency range 1 to 130 Hz. The data were analyzed with a modified stress-optical rule: The Young's modulus was decomposed into two complex functions, E(ω) and E(ω); the modified stress-optical coefficient, CR and CG, associated with the rubber (R) and glass (G) components, respectively, were determined. The results for six polymers, including polystyrene, poly(α-methyl styrene), and bisphenol A polycarbonate were compared with each other. One of the coefficients, CR, equivalent to the stress-optical coefficient in melts, mainly depended on the way in which phenyl groups were connected to the chain. The other, CG, was in the range of 20 to 40 Brewsters, and did not strongly depend on the details of polymer structure. The component function, E(ω), which was located in the glassy region and originated from the high glassy modulus, was almost the same in shape when plotted against ω with double logarithmic scales. The R component, E(ω), located at the long time end of the glass-to-rubber transition zone, was slightly sensitive to the molecular structure of polymers.  相似文献   

11.
This study demonstrates a new approach for converting SO2 into elemental sulfur by adding CH4 in a radio-frequency (RF) plasma reactor. With the applied power (P) of the RF reactor specified at 90 W and operating pressure set at 4000 N/m2, it was found that as the CH4/SO2 ratio (R) was increased from 0.3 to 1.0, most sulfur-containing products were in the form of elemental sulfur. While R was increased from 1 to 2, the content of elemental sulfur was decreased significantly, but CS2 was increased dramatically. While R was increased from 2 to 3, both elemental sulfur and CS2 contents became quite comparable. Nevertheless, it was found that both H2 and CO (that is, syngas) were the main nonsulfur-containing products under all testing conditions. These results indicate that the use of the RF plasma technique was not only beneficial to convert SO2, but also was able to convert CH4 into useful materials. For R = 0 (that is, no CH4 was introduced), it was found that the SO2 conversion (i.e., η) = 0.084, indicating that the RF plasma process was inadequate to convert pure SO2 without adding CH4 as a reducing agent. While R was increased to 2, it was found that η was improved significantly to 0.968 accompanied with η = 0.999. But as R was increased from 2 to 3, both η and η were slightly decreased. Both η and η also were sensitive to the applied power (P). As P was increased from 15 W to 90 W at R = 2, it was found that both η and η were increased dramatically from 0.247 and 0.320 to 0.968 and 0.999, respectively. But as P was increased from 90 W to 120 W, the increase on both η and η became very limited. Based on these, this study suggests that the operating condition of R = 2 and P = 90 W would be the most appropriate combination for SO2 conversion. © 2004 American Institute of Chemical Engineers AIChE J, 50: 524–529, 2004  相似文献   

12.
A quantitative model which described the microscopic and macroscopic refractive index properties of uniaxially oriented crystalline polymers has been extended in relation to molecular bond polarizabilities in this work. Application of this extended modeling methodology in analyzing measured refractive index data for a series of unoriented and oriented samples of linear polyethylene provided Δ = 0.0585 and Δ = 0.194 as the most probable crystalline and noncrystalline intrinsic birefringences for samples exhibiting spherulitic morphology. With these intrinsic birefringences, noncrystalline orientation functions were determined from the optical measurements coupled to the model and the results compared to values obtained from infrared measurements. This comparison of noncrystalline orientation functions, as well as from low density polyethylene reported by other investigators, provided experimental justification for our modeling methodology to examine the possibility of changing intrinsic birefringences for polyethylene as a function of orientation and morphology. The results of this examination demonstrated that values for Δ = 0.0585 and Δ = 0.12 should be used for both low and high density polyethylene samples oriented above the spherulitic to fibrillar transition region.  相似文献   

13.
Isotactic poly(vinyl cyclohexane) (PVCH) was studied by thermal analysis. The deduced equilibrium melting point, T, is 405°C (678 K). The heat of fusion, Δ H was found to be 50.82 J/g (5.60 kJ/mol) and Δ Cp at Tg, is 0.273 J/(gK) [30.1 J/(molK)]. The glass transition temperature, Tg, of the amorphous PVCH is 80°C (353 K). In semicrystalline samples, Tg increases up to 165°C (438 K) for crystallinities > 40%. Beside crystalline and flexible amorphous, a rigid amorphous phase is postulated in the semicrystalline polymer.  相似文献   

14.
In this study the crystallization behavior of linear low‐density polyethylenes (LLDPEs) (ethylene‐α‐olefin copolymers) was studied by polarized light microscopy. A modified Hoffman‐Lauritzen (MHL) expression is proposed whereby the equilibrium melting temperature, T (T), is replaced with the melting temperature of the crystal stem is replaced with the maximum possible stem length, T. It successfully describes the crystalline spherulitic growth kinetics for both homogeneous and heterogeneous LLDPEs. In addition to regimes III and II, another regime (IM) was found in the high crystallization temperature range. Linear growth behavior of crystalline spherulites was observed in regime III, and nonlinear growth behavior was found in regimes II and IM. The basal surface free energy can be estimated from the short chain branching polydispersity (SCBP) for LLDPEs with excluded comonomers. Polym. Eng. Sci. 45:74–83, 2005. © 2004 Society of Plastics Engineers.  相似文献   

15.
The modulus, density, glass transition temperature (Tg), and water absorption characteristics of an amine-cured resin [diglycidyl ether of bisphenol A (Epon 828)/diaminodiphenyl sulfone (DDS)] were studied as a function of extent of cure. The glass transition is a function of the extent of cure and reaches a maximum temperature, T, when it is completely cured; specimens with different extents of cure were formed by isothermal cure below T, for different times. After slowly cooling, the density at each extent of cure was obtained at room temperature. Moisture absorption was monitored gravimetrically at 25°C for 2 months at several humidity levels. The room temperature density and modulus decreased with increasing extent of conversion whereas the glass transition temperature and equilibrium water absorption increased. The equilibrium water absorption increased linearly with relative humidity, and the absorptivity increased linearly with specific volume. An interpretation of these anomalous results is made in terms of the nonequilibrium nature of the glassy state. The glass transition temperature increases as the extent of cure increases resulting in a material that is further from equilibrium at room temperature and therefore has more free volume and a greater propensity to absorb water.  相似文献   

16.
In this paper, we describe the preparation and structural characterization of biaxially oriented poly(p-phenylene sulfide) (PPS) films. These films were prepared in a biaxial stretching machine at various stretching temperatures, rates, and stretching ratios. Selected samples were constrained annealed at elevated temperatures. The state of orientation was determined by wide angle X-ray diffraction (pole figure determination) and birefringence measurements. The results are expressed in terms of the biaxial orientation functions (?,?). Mechanical properties (tensile modulus, tensile strength, and elongation to break) were obtained as a function of processing conditions and direction in the plane of the films.  相似文献   

17.
A series of poly(phthalazinone ether sulfone ketone) (PPESK) copolymers containing different component ratios of bis(4‐fluorodiphenyl) ketone and bis(4‐chlorodiphenyl)sulfone with respect to a certain amount of 4‐(4‐hydroxyphenyl)‐2,3‐phthalazin‐1‐one were synthesized by polycondensation. Glass transition temperatures of these polymers were adjusted from 263°C to 305°C by changing the ratios of reactants. Gas permeability and selectivity of the dense membranes of the polymers for three kinds of gases (CO2, O2, and N2) were determined at different temperatures. The result indicated that the membrane of PPESK (S/K = 1/1, mol ratio) had an excellent gas separation property. Permeability of the polymer membranes for CO2, O2, and N2 was P = 4.121 barrier, P = 0.674 barrier, and P = 0.0891 barrier, respectively. Separation factors of α and α were 7.6 and 46, respectively. New material was made into a composite membrane with silicone rubber for blocking up leaks and defects on the surface of its nonsymmetrical membrane. As a result of the test, permeability of the composite membrane was J = 7.2 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg and J = 0.99 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg, whereas the α was still higher than 7. These showed that PPESKs had a bright prospect as the potential membrane material for high‐temperature gas separation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2385–2390, 1999  相似文献   

18.
Corona treatment of films, mainly polyethylene, was studied at commercial levels in a small continuous treater. Degree of treatment was characterized by measuring polar and dispersion components of surface energy, ASTM Wipe and ASTM Adhesion Ratio (“peel adhesion”). The chief factors studied were corona current, applied frequency, web speed, dielectric thickness and air-gap thickness between electrode and film. Other factors less intensively investigated were type of film, film additives, aging time after treatment, humidity and corona atmosphere. The polar component of surface energy, γ, is the key to understanding the changes in adhesive behavior of the films during treatment. We found that, for the equipment used, γ is accurately given by the equation where D = dielectric thick ness and G = air gap, both in mils; S = web speed, ft/min; I = corona current, ma, and γ is in dyne-cm/cm2. A similarly structured equation describes ASTM Wipe. Using measured surface-energy components for the pressure-sensitive tape used in the peel adhesion test, it was possible to calculate an adhesion interaction for each film on which peel adhesion was measured and to show that it closely correlates with peel strength. Humidity changes in the moderate-humidity range, number of electrodes used and corona frequency had little effect on properties. Slip additives inhibited development of adhesion until treatment levels became high; adhesion properties gradually diminished upon aging of films stored at ambient conditions.  相似文献   

19.
Different amounts of (N,N′‐disalicylideneethylenediamin)cobalt (CoS) were blended to a cobalt (II)‐neutralized sulfonated EPDM (Co(II)S‐EPDM) ionomer membrane to enhance its oxygen‐enriching ability. Various influence factors on permeabilities and selectivities of the composite membranes, such as the gas pressure difference, the CoS content, and the testing temperature have been investigated. Oxygen permeability coefficients (P) and oxygen/nitrogen separation factors (α) increased simultaneously by decreasing the gas pressure difference or by increasing the CoS content. In comparison with the EPDM matrix, P and α of Co(II)S‐EPDM–CoS (85/15) composite membrane increased from 11.0 Barrer and 4.38 to 37.0 Barrer and 9.60. Obvious enhancement in the oxygen‐enriching property shows that the dual actions of cobaltous ion crosslinking and addition of an abundant cobalt complex may be an effective way to improve a rubbery polymer membrane. As high as 15 wt % of the CoS could be blended. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1071–1077, 1999  相似文献   

20.
An estimation of the true growth yields and maintenance coefficients for Comamonas acidovorans DSM 6426 under continuous cultivation on quinoline has been performed. The data were checked for consistency using available electron, carbon and nitrogen balances. The true biomass energetic yields, ηmax, and energetic maintenance coefficients, me, were estimated using two models based on control of growth rate and control of substrate uptake rate, respectively. The estimations were converted to the various familiar true growth yield and maintenance units such as substrate-based (Y, mS/X), oxygen-based (Y, m) and carbon dioxide-based (Y, m) units. For the complete mineralization of quinoline by C. acidovorans, values of ηmax = 0.371 and me = 0·0426 h?1 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号