首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A whole-field time-domain fluorescence lifetime imaging (FLIM) microscope with the capability to perform optical sectioning is described. The excitation source is a mode-locked Ti:Sapphire laser that is regeneratively amplified and frequency doubled to 415 nm. Time-gated fluorescence intensity images at increasing delays after excitation are acquired using a gated microchannel plate image intensifier combined with an intensified CCD camera. By fitting a single or multiple exponential decay to each pixel in the field of view of the time-gated images, 2-D FLIM maps are obtained for each component of the fluorescence lifetime. This FLIM instrument was demonstrated to exhibit a temporal discrimination of better than 10 ps. It has been applied to chemically specific imaging, quantitative imaging of concentration ratios of mixed fluorophores and quantitative imaging of perturbations to fluorophore environment. Initially, standard fluorescent dyes were studied and then this FLIM microscope was applied to the imaging of biological tissue, successfully contrasting different tissues and different states of tissue using autofluorescence. To demonstrate the potential for real-world applications, the FLIM microscope has been configured using potentially compact, portable and low cost all-solid-state diode-pumped laser technology. Whole-field FLIM with optical sectioning (3D FLIM) has been realized using a structured illumination technique.  相似文献   

2.
Video-rate fluorescence lifetime-resolved imaging microscopy (FLIM) is a quantitative imaging technique for measuring dynamic processes in biological specimens. FLIM offers valuable information in addition to simple fluorescence intensity imaging; for instance, the fluorescence lifetime is sensitive to the microenvironment of the fluorophore allowing reliable differentiation between concentration differences and dynamic quenching. Homodyne FLIM is a full-field frequency-domain technique for imaging fluorescence lifetimes at every pixel of a fluorescence image simultaneously. If a single modulation frequency is used, video-rate image acquisition is possible. Homodyne FLIM uses a gain-modulated image intensified charge-coupled device (ICCD) detector, which unfortunately is a major contribution to the noise of the measurement. Here we introduce image analysis for denoising homodyne FLIM data. The denoising routine is fast, improves the extraction of the fluorescence lifetime value(s) and increases the sensitivity and fluorescence lifetime resolving power of the FLIM instrument. The spatial resolution (especially the high spatial frequencies not related to noise) of the FLIM image is preserved, because the denoising routine does not blur or smooth the image. By eliminating the random noise known to be specific to photon noise and from the intensifier amplification, the fidelity of the spatial resolution is improved. The polar plot projection, a rapid FLIM analysis method, is used to demonstrate the effectiveness of the denoising routine with exemplary data from both physical and complex biological samples. We also suggest broader impacts of the image analysis for other fluorescence microscopy techniques (e.g. super-resolution imaging).  相似文献   

3.
The deconvolution of fluorescence lifetime imaging microscopy (FLIM) data that were processed with global analysis techniques is described. Global analysis of FLIM data enables the determination of relative numbers of molecules in different protein reaction states on a pixel-by-pixel basis in cells. The three-dimensional fluorescence distributions of each protein state can then be calculated and deconvolved. High-resolution maps of the relative concentrations of each state are then obtained from the deconvolved images. We applied these techniques to quantitatively image the phosphorylation state of ErbB1 receptors tagged with green fluorescent protein in MCF7 cells.  相似文献   

4.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

5.
At sufficiently high resolution, which depends on the wavelength of the electrons, the thickness of the sample exceeds the depth of field of the microscope. At this resolution, pairs of beams scattered at symmetric angles about the incident beam are no longer related by Friedel's law; that is, the Fourier coefficients that describe their amplitudes and phases are no longer complex conjugates of each other. Under these conditions, the Fourier coefficients extracted from the image are linear combinations of independent (as opposed to Friedel related) Fourier coefficients corresponding to the three-dimensional (3-D) structure. In order to regenerate the 3-D scattering density, the Fourier coefficients corresponding to the structure have to be recovered from the Fourier coefficients of each image. The requirement for different views of the structure in order to collect a full 3-D data set remains. Computer simulations are used to determine at what resolution, voltage and specimen thickness the extracted coefficients differ significantly from the Fourier coefficients needed for the 3-D structure. This paper presents the theory that describes this situation. It reminds us that the problem can be treated by considering the curvature of the Ewald sphere or equivalently by considering that different layers within the structure are imaged with different amounts of defocus. The paper presents several methods to extract the Fourier coefficients needed for a 3-D reconstruction. The simplest of the methods is to take images with different amounts of defocus. For helical structures, however, only one image is needed.  相似文献   

6.
In conventional wide‐field frequency‐domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity‐modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded at various phase differences between excitation and intensifier gain modulation, the phase and modulation depth of the emitted light is obtained. The fluorescence lifetime is determined from the delay and the decrease in modulation depth of the emission relative to the excitation. A minimum of three images is required, but in this case measurements become susceptible to aliasing caused by the presence of higher harmonics. Taking more images to avoid this is not always possible owing to phototoxicity or movement. A method is introduced, φFLIM, requiring only three recordings that is not susceptible to aliasing. The phase difference between the excitation and the intensifier is scanned over the entire 360° range following a predefined phase profile, during which the image produced by the intensifier is integrated onto the CCD camera, yielding a single image. Three different images are produced following this procedure, each with a different phase profile. Measurements were performed with a conventional wide‐field frequency‐domain FLIM system based on an acousto‐optic modulator for modulation of the excitation and a microchannel‐plate image intensifier coupled to a CCD camera for the detection. By analysis of the harmonic content of measured signals it was found that the third harmonic was effectively the highest present. Using the conventional method with three recordings, phase errors due to aliasing of up to ± 29° and modulation depth errors of up to 30% were found. Errors in lifetimes of YFP‐transfected HeLa cells were as high as 100%. With φFLIM, using the same specimen and settings, systematic errors due to aliasing did not occur.  相似文献   

7.
Frequency-domain fluorescence lifetime imaging microscopy (FLIM) has become a commonly used technique to measure lifetimes in biological systems. However, lifetime measurements are strongly dependent on numerous experimental parameters. Here, we describe a complete calibration and characterization of a FLIM system and suggest parameter optimization for minimizing measurement errors during acquisition. We used standard fluorescent molecules and reference biological samples, exhibiting both single and multiple lifetime components, to calibrate and evaluate our frequency domain FLIM system. We identify several sources of lifetime precision degradation that may occur in FLIM measurements. Following a rigorous calibration of the system and a careful optimization of the acquisition parameters, we demonstrate fluorescence lifetime measurements accuracy and reliability. In addition, we show its potential on living cells by visualizing FRET in CHO cells. The proposed calibration and optimization protocol is suitable for the measurement of multiple lifetime components sample and is applicable to any frequency domain FLIM system. Using this method on our FLIM microscope enabled us to obtain the best fluorescence lifetime precision accessible with such a system. Microsc. Res. Tech., 2009. © 2008 Wiley-Liss, Inc.  相似文献   

8.
Widefield frequency‐domain fluorescence lifetime imaging microscopy (FD‐FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Herein, we describe a practical implementation of multifrequency widefield FD‐FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine‐wave modulation. This allows parallel multifrequency FLIM measurement using the Fast Fourier Transform and the cross‐correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restores the loss of optical resolution caused by the defocusing effect when the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit‐free lifetime analysis of FLIM images. Here, our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multifrequency FLIM system is a valuable and simple tool in fluorescence imaging studies. Microsc. Res. Tech. 76:282–289, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A spectrograph with continuous wavelength resolution has been integrated into a frequency‐domain fluorescence lifetime‐resolved imaging microscope (FLIM). The spectral information assists in the separation of multiple lifetime components, and helps resolve signal cross‐talking that can interfere with an accurate analysis of multiple lifetime processes. This extends the number of different dyes that can be measured simultaneously in a FLIM measurement. Spectrally resolved FLIM (spectral‐FLIM) also provides a means to measure more accurately the lifetime of a dim fluorescence component (as low as 2% of the total intensity) in the presence of another fluorescence component with a much higher intensity. A more reliable separation of the donor and acceptor fluorescence signals are possible for Förster resonance energy transfer (FRET) measurements; this allows more accurate determinations of both donor and acceptor lifetimes. By combining the polar plot analysis with spectral‐FLIM data, the spectral dispersion of the acceptor signal can be used to derive the donor lifetime – and thereby the FRET efficiency – without iterative fitting. The lifetime relation between the donor and acceptor, in conjunction with spectral dispersion, is also used to separate the FRET pair signals from the donor alone signal. This method can be applied further to quantify the signals from separate FRET pairs, and provide information on the dynamics of the FRET pair between different states.  相似文献   

10.
We report a rapid hyperspectral fluorescence lifetime imaging (FLIM) instrument that exploits high-speed FLIM technology in a line-scanning microscope. We demonstrate the acquisition of whole-field optically sectioned hyperspectral fluorescence lifetime image stacks (with 32 spectral bins) in less than 40 s and illustrate its application to unstained biological tissue.  相似文献   

11.
Fluorescence imaging of green fluorescent protein (GFP) may be used to locate proteins in live cells and fluorescence lifetime imaging (FLIM) may be employed to probe the local microenvironment of proteins. Here we apply FLIM to GFP-tagged proteins at the cell surface and at an inhibitory natural killer (NK) cell immunological synapse (IS). We present a novel quantitative analysis of fluorescence lifetime images that we believe is useful to determine whether apparent FLIM heterogeneity is statistically significant. We observe that, although the variation of observed fluorescence lifetime of GFP-tagged proteins at the cell surface is close to the expected statistical range, the lifetime of GFP-tagged proteins in cells is shorter than recombinant GFP in solution. Furthermore the lifetime of GFP-tagged major histocompatibility complex class I protein is shortened at the inhibitory NK cell IS compared with the unconjugated membrane. Following our previous work demonstrating the ability of FLIM to report the local refractive index of GFP in solution, we speculate that these lifetime variations may indicate local refractive index changes. This application of our method for detecting small but significant differences in fluorescence lifetimes shows how FLIM could be broadly useful in imaging discrete membrane environments for a given protein.  相似文献   

12.
In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two‐photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy‐to‐operate platform capable to perform two‐photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The real-time uptake of serotonin, a neurotransmitter, by rat leukemia mast cell line RBL-2H3 and 5-hydroxytryptophan by Chinese hamster V79 cells has been studied by fluorescence lifetime imaging microscopy (FLIM), monitoring ultraviolet (340 nm) fluorescence induced by two-photon subpicosecond 630 nm excitation. Comparison with two-photon excitation with 590 nm photons or by three-photon excitation at 740 nm shows that the use of 630 nm excitation provides optimal signal intensity and lowered background from auto-fluorescence of other cellular components. In intact cells, we observe using FLIM three distinct fluorescence lifetimes of serotonin and 5-hydroxytryptophan according to location. The normal fluorescence lifetimes of both serotonin (3.8 ns) and 5-hydroxytryptophan (3.5 ns) in solution are reduced to approximately 2.5 ns immediately on uptake into the cell cytosol. The lifetime of internalized serotonin in RBL-2H3 cells is further reduced to approximately 2.0 ns when stored within secretory vesicles.  相似文献   

14.
Fluorescence correlation spectroscopy (FCS) is a very sensitive technique that can be used, e.g., for the measurement of low concentrations and for the investigation of transport of fluorescent molecules. Fluorescence lifetime imaging (FLIM) provides spatially resolved information about molecular fluorescence lifetimes reflecting the interactions of the molecules with their environment. We have applied simultaneous two-photon FCS and FLIM to probe the behavior of fluorescent molecules diffusing in submicrometer silicon oxide channels. Our measurements reveal differences in fluorescence lifetimes compared to bulk solution that result from the effects of confinement and the presence of interfaces. Confinement also affects diffusional characteristics of fluorophores as reflected in fluorescence autocorrelation functions. These possible consequences of both spatial confinement and the presence of interfaces between media with different refractive indices on the diffusion and fluorescence lifetime of molecules in nanostructures are discussed in general.  相似文献   

15.
The ability to image complex general three-dimensional (3D) structures, including reentrant surfaces and undercut features using scanning probe microscopy, is becoming increasing important in many small length-scale applications. This paper presents a dexel data representation and its algorithm implementation for scanning probe microscope (SPM) image simulation (morphological dilation) and surface reconstruction (erosion) on such general 3D structures. Validation using simulations, some of which are modeled upon actual atomic force microscope data, demonstrates that the dexel representation can efficiently simulate SPM imaging and reconstruct the sample surface from measured images, including those with reentrant surfaces and undercut features.  相似文献   

16.
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean‐square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering‐based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean‐square error with increasing resolution.  相似文献   

17.
Fluorescence lifetime imaging (FLIM) uses the fact that the fluorescence lifetime of a fluorophore depends on its molecular environment but not on its concentration. Molecular effects in a sample can therefore be investigated independently of the variable, and usually unknown concentration of the fluorophore. There is a variety of technical solutions of lifetime imaging in microscopy. The technical part of this paper focuses on time‐domain FLIM by multidimensional time‐correlated single photon counting, time‐domain FLIM by gated image intensifiers, frequency‐domain FLIM by gain‐modulated image intensifiers, and frequency‐domain FLIM by gain‐modulated photomultipliers. The application part describes the most frequent FLIM applications: Measurement of molecular environment parameters, protein‐interaction measurements by Förster resonance energy transfer (FRET), and measurements of the metabolic state of cells and tissue via their autofluorescence. Measurements of local environment parameters are based on lifetime changes induced by fluorescence quenching or conformation changes of the fluorophores. The advantage over intensity‐based measurements is that no special ratiometric fluorophores are needed. Therefore, a much wider selection of fluorescence markers can be used, and a wider range of cell parameters is accessible. FLIM‐FRET measures the change in the decay function of the FRET donor on interaction with an acceptor. FLIM‐based FRET measurement does not have to cope with problems like donor bleedthrough or directly excited acceptor fluorescence. This relaxes the requirements to the absorption and emission spectra of the donors and acceptors used. Moreover, FLIM‐FRET measurements are able to distinguish interacting and noninteracting fractions of the donor, and thus obtain independent information about distances and interacting and noninteracting protein fractions. This is information not accessible by steady‐state FRET techniques. Autofluorescence FLIM exploits changes in the decay parameters of endogenous fluorophores with the metabolic state of the cells or the tissue. By resolving changes in the binding, conformation, and composition of biologically relevant compounds FLIM delivers information not accessible by steady‐state fluorescence techniques.  相似文献   

18.
In this paper an approach for improving the quality of 3-D microscopic images obtained through optical serial sectioning is described and implemented. A serially sectioned image is composed of a sequence of 2-D images obtained by incrementing the focusing plane of the microscope through the specimen of interest; ideally, the image obtained at each focusing plane should be in focus, and should contain information lying only within that plane. In practice, however, the images obtained contain redundant information from neighbouring focusing planes and are blurred by a three-dimensional low-pass distortion. These degradations are a consequence of the limited aperture of any optical system; using principles of geometric optics and allowing for the passage of light through the specimen, we are able to demonstrate that the microscope distortion can be described as a linear system, if the absorption of the specimen is assumed to be linear and non-diffractive. The transfer function of the microscope is found to zero a biconic region of 3-D spatial frequencies orientated along the optical axis; a closed-form expression is derived for the low-pass transfer function of the microscope outside the region of missing frequencies. The planar resolution of the serial sections can be greatly improved by convolving the image obtained with the inverse of the low-pass distortion function, although the missing cone of frequencies is not recoverable. The reconstruction technique is demonstrated using both simulated images, to demonstrate more clearly the effects of the distortion and the accuracy of the subsequent reconstruction, and actual experiments with a pollen grain and a stained preparation of human cerebellum tissue.  相似文献   

19.
Widefield frequency‐domain fluorescence lifetime imaging microscopy (FD‐FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS‐FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. Microsc. Res. Tech. 78:1075–1081, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Exocytosis has been proposed to contain four sequential steps, namely docking, priming, fusion, and recycling, and to be regulated by various proteins-protein interactions. Synaptosomal-associated protein of 25 kDa (SNAP25) has recently been found to bind rabphilin, the Rab3A specific binding protein, in vitro. However, it is still unclear whether SNAP25 and rabphilin interact during exocytosis within cells in vivo. This problem was addressed by the integration of fluorescence resonance energy transfer (FRET) with high sensitivity fluorescence lifetime imaging microscopy (FLIM) to observe this protein-protein interaction. Enhanced green fluorescence protein-labeled SNAP25 (donor) and red fluorescence protein-labeled rabphilin (acceptor) were expressed in neuroendocrine PC12 cells as a FRET pair and ATP stimulation was carried out for various durations. With 10 s stimulation, a 0.17-ns left shift of the lifetime peak was found when compared with donor only. Analysis of the lifetime image further suggested that the lifetime recovered to a similar level as the donor only in a time dependent manner. Four-dimensional (4D) images by FLIM provided useful information indicating that the interaction of SNAP25 and rabphilin occurred particularly within optical sections near cell membrane. Together the results suggest that SNAP25 bound rabphilin loosely at docking step before exocytosis and the binding became tighter at the very start of exocytosis. Finally, these two proteins dissociated after stimulation. To our knowledge, this is the first report to demonstrate the interaction of SNAP25 and rabphilin in situ using the FLIM-FRET technique within neuroendocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号