首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
环氧树脂/聚酰胺/DDM体系的固化行为及力学性能   总被引:2,自引:0,他引:2  
通过非等温DSC法及拉伸性能测试研究了4,4'-二氨基二苯基甲烷(DDM)用量对环氧树脂/聚酰胺651体系的固化反应的影响,计算了固化反应的表观活化能和反应级数,确定了其胶粘剂体系的固化工艺参数。结果表明,胶粘剂中DDM的质量分数达到14%(以环氧树脂质量为基准)时,固化反应放热量达到最大值。固化体系的活化能为53.654 kJ/mol,反应级数为0.895。最佳起始固化温度为40℃,峰值温度为85℃,终止温度为120℃,体系的拉伸强度提高了约50%。  相似文献   

2.
采用非等温差示扫描量热法研究了有机脲/环氧树脂体系的固化反应的动力学。用Kissinger动力学模型计算得到该体系固化反应的表观活化能为58.1 kJ/mol,指前因子为5.83×106 min-1。通过Crane模型得出固化反应级数n为0.884,表明有机脲/环氧树脂体系的固化反应属于复杂反应。根据特征温度-升温速率外推法,得到前固化温度为110℃,固化温度为130℃,后固化温度为150℃。在实际应用中,为确定有机脲/环氧树脂体系的固化工艺提供参考。  相似文献   

3.
二氰二胺作为环氧树脂的潜伏性固化剂,其固化物机械性能和介电性能优异。但由于二氰二胺与环氧树脂相溶性差,得不到均匀的组成物,且环氧树脂/二氰二胺体系的固化过程需在高于160℃的温度中进行。利用不同含量的有机酸与咪唑3位氮原子中和,改性生成的盐作为环氧树脂/二氰二胺体系固化促进剂,对该体系进行了改进,使其能够在中温(90~120℃)条件下固化。利用IR对改性产物进行了表征,并对未加促进剂的环氧树脂/双氰胺体系和以咪唑及有机酸改性咪唑为促进剂三种体系分别进行了差热分析。结果表明,有机酸改性咪唑促进剂可以使环氧树脂/二氰二胺体系的固化温度降低近50℃,并且适用期显著增加,长达141d,耐水性和耐热老化性能增加。  相似文献   

4.
采用DSC研究了以双氰胺/取代脲为潜伏型中温固化体系的三官能团环氧树脂TDE-85的固化反应动力学,探讨了反应机理并确定了最佳的固化工艺参数。结果表明,固化温度<140℃时,受扩散效应和双氰胺在环氧树脂中溶解速率的影响,体系的等温固化行为与自催化模型存在偏差;固化温度>150℃后,体系的等温固化行为可用自催化反应模型很好地描述,其表观活化能为86.33 kJ/mol,指前因子为2.68×1010,总反应级数(m+n)为2~3。综合变温DSC和等温DSC的实验结果,可确定体系的最佳固化工艺条件为:120℃下预固化1 h后再升温至150℃保温1 h。  相似文献   

5.
高性能环氧树脂浇铸体研究   总被引:1,自引:0,他引:1  
采用多官能缩水甘油胺型环氧树脂为基体,甲基四氢苯酐(MeTHPA)为固化剂,BH-1为促进剂,制备了环氧树脂浇铸体。研究了该体系的凝胶时间,粘度随温度的变化和固化特性,确定了最佳固化工艺,并对浇铸体进行了弯曲和拉伸等力学性能测试。结果表明:体系最佳固化条件为80℃/2 h+100℃/1 h+120℃/1 h,然后在150℃下后处理2 h。浇注体弯曲强度和拉伸强度分别达到202 MPa和99.9 MPa,弯曲模量和拉伸模量分别达到4.26 GPa和3.48 GPa,玻璃化转变温度为160.85℃,具有较低的粘度、良好的浸渍性,耐热性和优异的力学性能。  相似文献   

6.
用等离子体诱导马来酸酐(MAH)修饰碳纳米管(p-CNTs),使其表面高度功能化,并将其引入环氧树脂(EP)固化体系,制备EP/p-CNTs纳米复合材料。考察了功能化参数对EP/p-CNTs纳米复合材料力学性能的影响。经p-CNTs掺杂的复合材料力学性能显著提高,在优化的等离子体功能化条件(功率30 W、时间20 min、温度120℃)下制备w(p-CNTs)为0.3%的复合材料,其拉伸强度、拉伸弹性模量、拉伸断裂应变及简支梁缺口冲击强度较纯EP分别提高了83%,484%,208%,101%。  相似文献   

7.
魏江雄 《粘接》2022,49(1):23-26
基于环氧树脂/聚酰胺体系的固化反应机理,通过实验研究了E-44环氧树脂固化物的力学性能随650聚酰胺树脂的添加量、固化条件的变化规律。弯曲强度和拉伸剪切强度试验结果表明:在同一固化条件下,随着"650"聚酰胺含量的增加,固化物的力学性能随之增加;在温度60℃时固化物的力学性能优于温度25℃时固化物的力学性能。  相似文献   

8.
李璐  张贤明 《塑料科技》2023,(11):20-26
采用非等温差示扫描量热法(DSC)研究纯环氧树脂(EP)、环氧树脂/碳纳米管复合材料(EP/MWCNTs)、环氧树脂/超支化聚酯修饰碳纳米管复合材料(EP/MWCNTs-H204)和环氧树脂/超支化聚酰胺修饰碳纳米管复合材料(EP/MWCNTs-N103)4种体系的固化动力学。基于Kissinger方法和Ozawa方法计算了各体系反应的活化能。结果表明:经过超支化聚合物修饰的EP/MWCNTs-H204和EP/MWCNTs-N103体系比未经修饰的其余两个体系,具有较低的表观活化能,说明超支化聚合物的引入对环氧树脂复合材料的固化反应具有显著的促进作用。采用Málek方法得出自动催化模型(Sesták-Berggren),利用Sesták-Berggren对各体系进行理论计算,提出了描述固化过程的动力学参数和方程式。理论计算结果与实验结果进行对比相似度较高,说明Sesták-Berggren模型可以很好地描述4种不同环氧树脂体系的固化动力学行为。  相似文献   

9.
马来海松酸酐的合成及其固化反应特性研究   总被引:1,自引:1,他引:0  
松香与亲二烯体进行Diels-Alder反应合成了环氧树脂固化剂马来海松酸酐,利用傅里叶红外光谱仪(FT-IR)、热重分析仪(DTA)、拉力机等分析测试手段,对环氧树脂/马来海松酸酐体系固化产物的特性进行了研究。结果表明,环氧树脂/马来海松酸酐固化体系在100℃/2h、120℃/2h、150℃/5h、质量比为1:0.8的条件下可完全固化。固化产物的平均剪切强度17.3MPa,热分解温度可达371.5℃,与甲基四氢苯酐(Me-TH-PA)/环氧固化物相比,分别高3.74MPa,6.1℃。该产物可望在环氧树脂中高温固化领域得到广泛应用。  相似文献   

10.
在双酚F树脂中分别加入不同质量的711和TDE-85环氧树脂制备了6种环氧树脂体系,并采用聚醚胺和脂环胺复合固化剂固化,对各体系的粘度、固化行为、耐热性及力学性能进行了测试。结果表明,711环氧树脂具有比TDE-85更高的反应活性。在80 g双酚F树脂中加入20 g TDE-85环氧制备的体系具有最佳的综合性能,30℃下的适用期(粘度500 mPa·s)为120 min,玻璃化转变温度102℃,常温下固化物拉伸强度为78.6 MPa,有望用于多种复合材料的RTM成型。  相似文献   

11.
以聚四氢呋喃醚、异佛尔酮二异氰酸酯、2-乙基咪唑为原料,合成了以2-乙基咪唑封端的聚氨酯,并用于改性环氧树脂E-44.利用傅立叶红外分析仪、示差扫描量热仪、拉伸试验机等手段对其与环氧树脂混合物的凝胶时间、固化温度、解封情况、拉伸剪切强度等性能进行了研究.结果表明,咪唑封端的聚氨酯可以在130℃下较好地解封,每10份E-...  相似文献   

12.
杨永红  陈志明 《化工时刊》2008,22(10):24-27
研究了双组分热固性环氧沥青材料的高温储存稳定性。通过CFM-300E荧光显微镜观测了环氧沥青材料B组分120℃储存时的微观形态,使用WDW-20型电子万能试验机测定了材料的拉伸强度和断裂延伸率。制备的环氧沥青B组分在120℃下储存5d后,12h、120℃下固化物平均拉伸强度5.34MPa,平均断裂延伸率为210%。环氧沥青材料B组分120℃储存过程中,沥青尤其是顺酐化沥青会向固化树脂迁移,在5d后对固化反应产生影响。  相似文献   

13.
双酚F/间苯二酚共聚型环氧树脂   总被引:5,自引:1,他引:5  
李志宏  盘毅  谢凯 《热固性树脂》2005,20(1):15-17,27
采用间苯二酚、双酚F与环氧氯丙烷共聚合成一种高性能的环氧树脂,研究了不同反应温度、反应时间、双酚F/间苯二酚比例等条件对共聚环氧树脂结构材料性能的影响,确定了合成条件。结果表明所制备的双酚F/间苯二酚共聚型环氧树脂粘度比单纯双酚F环氧树脂低,其热固化结构材料的韧性、耐热性和拉伸强度较纯双酚F和间苯二酚型环氧树脂有明显提高。其最佳合成条件为:醚化温度为80℃,醚化时间5h,加碱闭环温度为60℃,加碱速度为4g/10min。间苯二酚与双酚F质量为20∶80时共聚树脂的综合性能最佳。其粘度为2 1Pa·s,比单纯的双酚F环氧树脂下降了42%;玻璃化温度为165℃,比纯双酚F环氧树脂提高了20℃;拉伸强度为102 3MPa,比纯双酚F环氧树脂提高了27%;弯曲强度为113 6MPa,比单纯的双酚F环氧树脂下降了18%。  相似文献   

14.
采用等温黏度实验和浇铸体力学性能测试来优选自制改性固化剂CUR–1的配比,通过不同升温速率下的固化过程差示扫描量热并对固化物进行傅立叶变换红外光谱分析,确定了体系的固化制度,研制出一种适用于发动机壳体或结构复杂的回转体类结构件的碳纤维湿法缠绕树脂基复合材料的中低温固化环氧树脂体系,用湿法缠绕工艺制作单向纤维缠绕成型复合材料环(NOL环)并进行了性能测试。结果表明:当CUR–1的含量为15份时,树脂体系具有适于湿法缠绕工艺的黏度和使用期,树脂可在80℃完全固化,同时浇铸体拉伸强度为84 MPa,拉伸弹性模量为3.8 GPa,断裂伸长率为5.4%,热变形温度为131℃。该树脂体系与纤维粘结性好,NOL环力学性能高,NOL环拉伸强度为2 451 MPa,拉伸弹性模量为146 GPa,层剪切强度为55 MPa。  相似文献   

15.
RTM成型用高性能环氧树脂基体的研究   总被引:1,自引:0,他引:1  
将AG-80和TDE-86以一定比例混合,通过加入自配的低粘度液体固化剂,得到了一种适用于RTM工艺的树脂体系。结果表明,该树脂体系在30℃时的粘度为1081mPa.s,其树脂固化物的拉伸强度为73MPa,弹性模量达到1.36GPa,断裂伸长率为6.3%,弯曲强度为150MPa,弯曲模量为3.12GPa,玻璃化转变温度为191℃,该树脂体系不仅粘度低,还具有优异的力学性能和耐温性,可满足RTM成型工艺对环氧树脂体系的要求。  相似文献   

16.
采用端环氧基硅油及其预反应物来改性双酚A型环氧树脂。采用热分析、扫描电镜和力学性能等测试方法系统探讨了改性方法、有机硅含量对环氧树脂性能的影响。采用端环氧基硅油直接物理共混改性的EP,其耐热性几乎不变,但力学性能下降较大。采用5份端环氧基硅油预反应物改性的EP,其玻璃化转变温度由未改性的163.23 ℃提高到165.90 ℃,拉伸强度几乎保持不变,断裂伸长率由7.6 %提高到16.7 %,冲击强度由20.23 kJ/m2提高到27.19 kJ/m2。拉伸断面的SEM照片表明,环氧树脂固化物显示出明显的增韧效果。  相似文献   

17.
《Polymer Composites》2017,38(3):588-596
A strong and tough carbon nanotube (CNT)/epoxy composite was fabricated by resin solution impregnation process based on floating catalyst chemical vapor deposition (CVD)–growth CNT films, which had a tensile strength and toughness of 405 MPa and 122 J/g, respectively, and good damping properties as well. Evolution of the composite structure revealed that the CNTs aligned along the tension direction with decreasing orientation angle, and the CNT bundle size enlarged during the tensile test process, which contributed to efficient load transfer among the composite network. Results showed that the proper resin content could bring benefit for strong connections and dense packing of CNTs/bundles, but excessive resin content was unfavorable for improving mechanical properties and conductivities of the nanocomposite. In addition, the resin in CNT film/epoxy composites had a lower crosslink density than that in a neat epoxy system, which endowed the CNT composites with large deformation capability. POLYM. COMPOS., 38:588–596, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Carbon nanotubes (CNTs) were used to improve the tensile properties of an epoxy resin and its continuous carbon fiber (CF) reinforced composites. Micrography picture showed that CNTs has been well incorporated into the composites, and made the fracture cross section more rougher through sharing the stress. For the CNT/epoxy composite, the tensile strength and modulus both increased upon the CNT addition, and at a CNT volume concentration of 2.0%, the maximum enhancements in the tensile strength and modulus were achieved as 26.7% and 21.5%, respectively. For the CNT‐CF/epoxy composite, the maximum enhancement in tensile strength was achieved as 11.6% at a CNT volume concentration of 1.0% and then decreased with the further increase of the CNT addition, but the tensile modulus increased monotonically upon the CNT addition. POLYM. COMPOS., 36:1664–1668, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号