首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biochemical and immunocytochemical properties of peroxisomal and mitochondrial beta-oxidation enzymes in bovine adrenal chromaffin cells were investigated. Peroxisomes were detectable by immunofluorescence staining using antibodies against acyl-CoA oxidase, peroxisomal 3-ketoacyl-CoA thiolase and catalase. The mitochondria were abundantly stained with antibody against mitochondrial 3-ketoacyl-CoA thiolase. The biosynthesis and intracellular processing of acyl-CoA oxidase and the peroxisomal 3-ketoacyl-CoA thiolase was slower than that in fibroblasts. The peroxisomal beta-oxidation activities shown by [1-14C] lignoceric acid oxidation were slightly lower than those in fibroblasts, whereas the mitochondrial beta-oxidation activities shown by [1-14C] palmitic acid oxidation were almost identical to those in fibroblasts. Adrenal chromaffin cells are useful materials for investigating the peroxisomal and mitochondrial metabolism of autonomic neurons and may contribute to the clarification of neuronal dysfunction in peroxisomal and mitochondrial disorders.  相似文献   

2.
The effects of mono(2-ethyl-5-oxohexyl)phthalate [ME(O)HP], a di(2-ethylhexyl)phthalate (DEHP) metabolite and a potent peroxisomal inducer, on the mitochondrial beta-oxidation were investigated. In isolated rat hepatocytes, ME(O)HP inhibited long chain fatty acid oxidation and had no effect on the ketogenesis of short chain fatty acids, suggesting that the inhibition occurred at the site of carnitine-dependent transport across the mitochondrial inner membrane. In rat liver mitochondria, ME(O)HP inhibited carnitine acyltransferase I (CAT I; EC 2.3.1.21) competitively with the substrates palmitoyl-CoA and octanoyl-CoA. An analogous treatment of mouse mitochondria produced a similar competitive inhibition of palmitoyl-CoA transport whereas ME(O)HP exposure with guinea pig and human liver mitochondria revealed little or no effect. The addition of clofibric acid, nafenopin or methylclofenopate revealed no direct effects upon CAT I activity. Inhibition of transferase activity by ME(O)HP was reversed in mitochondria which had been solubilized with octyl glucoside to expose the latent form of carnitine acyltransferase (CAT II), suggesting that the inhibition was specific for CAT I. Our results demonstrate that in vitro ME(O)HP inhibits fatty acid oxidation in rat liver at the site of transport across the mitochondrial inner membrane with a marked species difference and support the idea that induction of peroxisome proliferation could be due to an initial biochemical lesion of the fatty acid metabolism.  相似文献   

3.
Hepatic coenzyme A (CoA) plays an important role in cellular lipid metabolism. Because mitochondria and peroxisomes represent the two major subcellular sites of lipid metabolism, the present study was designed to investigate the specific impact of hepatic CoA deficiency on peroxisomal as well as mitochondrial beta-oxidation of fatty acids. CoA deficiency (47% decrease in free CoA and 23% decrease in total CoA) was produced by maintaining weanling male Sprague-Dawley rats on a semipurified diet deficient in pantothenic acid (the precursor of CoA) for 5 weeks. Hepatic mitochondrial fatty acid oxidation of short-chain and long-chain fatty acids were not significantly different between control and CoA-deficient rats. Conversely, peroxisomal beta-oxidation was significantly diminished (38% inhibition) in livers of CoA-deficient rats compared to control animals. Peroxisomal beta-oxidation was restored to normal levels when hepatic CoA was replenished. It is postulated that since the role of hepatic mitochondrial beta-oxidation is energy production while peroxisomal beta-oxidation acts mainly as a detoxification system, the mitochondrial pathway of beta-oxidation is spared at the expense of the peroxisomal pathway when liver CoA plummets. The present study may offer an animal model to investigate mechanisms involved in peroxisomal diseases.  相似文献   

4.
Purified outer membrane of beef liver mitochondria was found to elongate medium chain fatty acyl-CoA primer by the incorporation of [1-14C]acetyl-CoA. This enzymic activity, extracted by Triton X-100, was purified 8-fold by ammonium sulfate fractionation followed by chromatography on a Sephadex column. Purified inner membrane, when processed through an identical purification procedure, yielded a second enzyme system which incorporated [1-14C]acetyl-CoA into long chain fatty acids in the presence of medium chain fatty acyl-CoA primer. This enzyme preparation was about four times as active as the preparation from the outer membrane, and used NADH as the reductant for the synthesis. The molecular weights of the inner and the outer membrane enzyme systems, estimated by gel filtration as well as sucrose density gradient centrifugation, were approx. 57 000 and 126 000, respectively. The partially purified outer membrane enzyme system required NADH and a medium chain acyl-CoA primer for the incorporation of [1-14C]acetyl-CoA into long chain fatty acids. KNC stimulated the reaction. NADPH could substitute for NADH only to a limited extent. Malonyl-CoA was ineffective as a substrate in this reaction. The optimum pH of the reaction was 7.2-7.6 in 0.1 M potassium phosphate buffer. Dithiothreitol, beta-mercaptoethanol, N-ethylmaleimide and high concentrations of ATP and acyl-CoA primer inhibited the reaction. The specificity for the acyl-CoA primer in the reaction was very broad. All the primers tested, C8 to C16, incorporated acetyl-CoA significantly. However, maximum incorporation was observed with dodecanoyl-CoA. Decanoyl-CoA was the best primer for the enzyme system isolated from the inner membrane. About 42% of the radioactivity in the fatty acids synthesized by the outer membrane enzyme system, from myristoyl-CoA and [1-C14]acetyl-CoA, was in palmitic acid. Of the remaining activity, 41% was in stearic acid and about 38% in longer-chain acids. Hence, the elongation of the primer fatty acid by one C2 unit appeared to be the predominant process in this synthesis. In the elongation of myristoyl-C0A by the inner membrane enzyme system, palmitic acid which constituted nearly 78% of the fatty acids synthesized, was the primary product.  相似文献   

5.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   

6.
Mitochondria uncoupling by fatty acids in vivo is still questionable, being confounded by their dual role as substrates for oxidation and as putative genuine uncouplers of oxidative phosphorylation. To dissociate between substrate and the uncoupling activity of fatty acids in oxidative phosphorylation, the uncoupling effect was studied here using a nonmetabolizable long chain fatty acyl analogue. beta,beta'-Methyl-substituted hexadecane alpha,omega-dioic acid (MEDICA 16) is reported here to induce in freshly isolated liver cells a saturable oligomycin-insensitive decrease in mitochondrial proton motive force with a concomitant increase in cellular respiration. Similarly, MEDICA 16 induced a saturable decrease in membrane potential, proton gradient, and proton motive force in isolated liver and heart mitochondria accompanied by an increase in mitochondrial respiration. Uncoupling by MEDICA 16 in isolated mitochondria was partially suppressed by added atractyloside. Hence, fatty acids may act as genuine uncouplers of cellular oxidative phosphorylation by interacting with specific mitochondrial proteins, including the adenine nucleotide translocase.  相似文献   

7.
Recent studies from our laboratory have shown that methyl palmoxirate (MEP), an inhibitor of mitochondrial beta-oxidation of long chain fatty acids, can be used to increase incorporation of radiolabeled palmitic acid into brain lipids and reduce beta-oxidation of the fatty acid. Thus, MEP allows the use of carbon labeled palmitate for studying brain lipid metabolism in animals and humans by quantitative autoradiography or positron emission tomography (PET). As it is essential to pretreat human subjects with an acute dose of MEP prior to intravenous injection of [1-11C]palmitate for PET scanning, this study was undertaken to determine the plasma elimination half-life of MEP in rats and human subjects and to provide insight about the drug's absorption and metabolism. A gas chromatographic method was developed to measure MEP in body fluids. Following oral administration of MEP to rats (2.5 and 10 mg/kg) and to humans, the unmetabolized drug could not be detected in plasma or urine (sensitivity of detection was 1 ng). However, when MEP was injected intravenously (10 mg/kg) in rats, a peak initial concentration could be measured in plasma (7.7 microg/mL), the clearance of the drug from plasma was rapid (t1/2 = 0.6 min), which indicates that MEP readily enters tissue lipid pools or is metabolized like long-chain fatty acids. As no adverse experience occured in the 11 human subjects studied, oral administration of a single dose of MEP was safe under the conditions of this study and may be used to increase the incorporation of positron labeled palmitic acid for studying brain lipid metabolism in vivo by PET.  相似文献   

8.
Mitochondrial fatty acid beta-oxidation multienzyme complex/trifunctional protein has an alpha4beta4 structure and catalyzes the second through fourth reactions of the fatty acid beta-oxidation cycle. The alpha and beta subunits (HADHA and HADHB) are members of the enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase families, respectively. We analyzed the localization of each of these two genes (HADHA and HADHB) by in situ hybridization and found that both can be assigned to human chromosome band 2p23. Since the distance between the two loci is quite short, the two genes seem to exist side by side, as do the two (A and B subunit) genes of the bacterial fatty acid beta-oxidation multienzyme complex. This is an important and interesting finding in that two entirely different genes, encoding two independent proteins forming a multienzyme complex, are adjacent on chromosome band 2p23.  相似文献   

9.
An uncoupling protein was recently discovered in plant mitochondria and demonstrated to function similarly to the uncoupling protein of brown adipose tissue. In this work, green tomato fruit mitochondria were purified on a self-generating Percoll gradient in the presence of 0.5% bovine serum albumin to deplete mitochondria of endogenous free fatty acids. The uncoupling protein activity was induced by the addition of linoleic acid during the resting state, and in the progressively uncoupled state, as well as during phosphorylating respiration in the presence of benzohydroxamic acid, an inhibitor of the alternative oxidase and with succinate (+ rotenone) as oxidizable substrate. Linoleic acid strongly stimulated the resting respiration in fatty acid-depleted mitochondria but had no effect on phosphorylating respiration, suggesting no activity of the uncoupling protein in this respiratory state. Progressive uncoupling of state 4 respiration decreased the stimulation by linoleic acid. The similar respiratory rates in phosphorylating and fully uncoupled respiration in the presence and absence of linoleic acid suggested that a rate-limiting step on the dehydrogenase side of the respiratory chain was responsible for the insensitivity of phosphorylating respiration to linoleic acid. Indeed, the ADP/O ratio determined by ADP/O pulse method was decreased by linoleic acid, indicating that uncoupling protein was active during phosphorylating respiration and was able to divert energy from oxidative phosphorylation. Moreover, the respiration rates appeared to be determined by membrane potential independently of the presence of linoleic acid, indicating that linoleic acid-induced stimulation of respiration is due to a pure protonophoric activity without any direct effect on the electron transport chain.  相似文献   

10.
In mammals including man, peroxisomes play a pivotal role in the breakdown of various carboxylates via beta-oxidation. Physiological substrates include very long chain fatty acids (e.g. lignoceric acid), medium and long chain dicarboxylic acids, certain polyunsaturated fatty acids, 2-methylbranched isoprenoid-derived fatty acids (e.g. pristanic acid), prostanoids (prostaglandins, leukotrienes thromboxanes), and bile acid intermediates (di- and trihydroxycoprostanic acid). Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and man indicate that these carboxylates, in contrast to previous belief, are degraded by separate systems composed of different enzymes. Bile acid intermediates are degraded in hepatic peroxisomes via 2-methylacyl-CoA racemase, trihydroxycoprostanoyl-CoA oxidase (in rat) or branched acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. beta-oxidation of pristanic acid can occur in all tissues and relies on the action of 2-methylacyl-CoA racemase (for the 2R-isomer), pristanoyl-CoA oxidase (in rat) or branched chain acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. The enzymes catalyzing the breakdown of straight chain fatty acids are palmitoyl-CoA oxidase, L-specific multifunctional protein 1 (MFP 1) and the dimeric thiolase. These enzymes are present in all tissues and are identical to those initially characterized in hepatic peroxisomes. Due to the presence of peroxisome targeting signals in all the above mentioned proteins, they are localised in the cytosolic or absent (due to proteolysis) in tissues of patients with a generalized peroxisome deficiency (e.g. Zellweger syndrome). In addition to these lethal inherited disorders that are caused by defects in the biogenesis of peroxisomes, a growing number of patients with peroxisomal beta-oxidation deficiencies have been described. The implications of the presence of separate beta-oxidation systems for the latter disorders is quite profound and calls, in many cases, for a reevaluation of the diagnosis of such patients.  相似文献   

11.
PHIPA 3-10 [13-(4'-iodophenyl)-3-(p-phenylene)tridecanoic acid] is a p-phenylene-bridged, radioiodinated omega-phenyl fatty acid that has recently been developed to study coronary artery disease or cardiomyopathies. Here, we demonstrate that PHIPA 3-10 exhibits the characteristics of a long-chain fatty acid, including its ability to be efficiently taken up by myocytes and to function as a substrate for beta-oxidation before it is trapped. METHODS: Myocardial metabolism of carrier-added and carrier-free 131I-PHIPA 3-10 preparations were investigated in rats in vivo and in isolated Langendorff rat hearts. Heart extracts were analyzed by high-performance liquid chromatography, negative-ion electrospray mass spectrometry and investigation of intracellular distribution using density-gradient centrifugation. RESULTS: A single, rapidly formed metabolite was found in the heart extract and also, surprisingly, in the hydrolyzed lipids. The total amount of metabolite increased from 43% to 51% between 15 and 60 min postinjection. By high-performance liquid chromatography comparison with synthetic potential catabolites, the metabolite was assigned the name PHIPA 1-10 [11-(4'-iodophenyl)-1-(p-phenylene)undecanoic acid] and was the product of one beta-oxidation cycle. Additional proof was obtained from the mass spectrometric analysis of the metabolite formed in vivo. The formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl transferase I inhibitor, indicating beta-oxidation of 131I-PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of 131I-PHIPA 3-10 was obtained by density-gradient centrifugation of homogenized rat heart tissue. The position of the labeled free PHIPA 3-10 and free metabolite peaked within the fraction containing mainly mitochondria. CONCLUSION: In spite of its bulky structure, 131I-PHIPA 3-10 is extracted by the myocardium in a manner similar to the extraction of the unmodified fatty acid analog, IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group, which prevents more than one beta-oxidation cycle. Intracellular free PHIPA 3-10 and free PHIPA 1-10 are present in the mitochondria, whereas most of the esterified metabolite was found in the cytosolic lipid pool. Hence, the rapid appearance of PHIPA 1-10 in the lipid pool must be accounted for by mitochondrial leakage or by an unknown in-out transport system.  相似文献   

12.
The specific ability of fatty acids to increase the proton conductance of the inner membrane of mitochondria from the liver and brown adipose tissue of cold-adapted hamsters was compared. The liver and brown-adipose-tissue mitochondria had their effective proton conductances increased by respectively 0.028 and 0.94 nmol H+- min-1. (mV of proton electrochemical gradient)-1 for each nmol of palmitate bound. No difference could be detected between the abilities of liver and brown-adipose-tissue mitochondria to bind fatty acids. Purine nucleotides did not displace farry acids from the brown-adipase-tissue mitochondria. The endogenous fatty acid content of hamster brown-adipose-tissue mitochondria prepared in the absence of album was found to be equivalent to 17 +/- 7 nmol of palmitate/mg protein. The fatty acid content was reduced to 1 nmol/mg after preincubation of the mitochondria with CoA, ATP and carnitine. No inert pool of fatty acids could be detected. The endogenous fatty acids of hamster liver mitochondria were less than 4 nmol of palmitate equivalent/mg protein. Some of the fatty acid associated with the brown-adipose-tissue mitochondria originates during preparation of the mitochondria. In the light of these results, the physiological role of the fatty acids in controlling the proton conductance of the brown-adipose-tissue mitochondrial inner membrane, and hence- non-shivering thermogenesis, is re-evaluated.  相似文献   

13.
A single oral dose of two 3-thia (3-thiadicarboxylic and tetradecylthioacetic acids) and of 4-thia (tetradecylthiopropionic acid) fatty acids were administered to normolipidemic rats and their effects on lipid metabolism over a 24 hr period were studied. All three thia fatty acids could be detected in plasma 2 hr after treatment. Tetradecylthioacetic and tetradecylthiopropionic acids were detected in different hepatic lipid fractions but were incorporated mainly into hepatic phospholipids. Two hours after administration hepatic mitochondrial beta-oxidation and the total liver level of long-chain fatty acyl-CoA increased with a concomitant decrease in saturated fatty acids, total hepatic malonyl-CoA and plasma triacylglycerol levels in the 3-thia fatty acid groups. Tetradecylthiopropionic acid administration caused a decrease in mitochondrial beta-oxidation and an increase in plasma triacylglycerol at 24 hr. The activities of key lipogenic enzymes were unaffected in all treatment groups. Plasma cholesterol level was reduced only at 8 hr in 3-thiadicarboxylic acid treated rats although 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase was suppressed already at 2, 4, 8 and 12 hr. The results show that thia fatty acids are rapidly absorbed and are systemically available after oral administration but the 3-thia fatty acids reached systemic circulation more slowly and less completely than the 4-thia fatty acid. Very low levels of the thia fatty acids are detected in plasma 24 hr after a single administration. They are incorporated into all hepatic lipid classes, especially phospholipids. Rapid incorporation of a non beta-oxidizable thia fatty acid into hepatic lipids may cause a diversion of other fatty acids from glycerolipid biosynthesis to mitochondrial beta-oxidation. Stimulation of mitochondrial beta-oxidation and suppression of HMG-CoA reductase are primary events, occurring within hours, after 3-thia fatty acid administration. The hypotriglyceridemic effect of the 3-thia fatty acids observed at 2-4 hr is independent of the activities of key lipogenic and triacylglycerol synthesising enzymes.  相似文献   

14.
The transport properties of the uncoupling protein (UCP) from brown adipose tissue have been studied in mutants where Cys304 has been replaced by either Gly, Ala, Ser, Thr, Ile or Trp. This position is only two residues away from the C-terminus of the protein, a region that faces the cytosolic side of the mitochondrial inner membrane. Mutant proteins have been expressed in Saccharomyces cerevisiae and their activity determined in situ by comparing yeast growth rates in the presence and absence of 2-bromopalmitate. Their bioenergetic properties have been studied in isolated mitochondria by determining the effects of fatty acids and nucleotides on the proton permeability and NADH oxidation rate. It is revealed that substitution of Cys304 by non-charged residues alters the response of UCP to fatty acids. The most effective substitution is Cys for Gly since it greatly enhances the sensitivity to palmitate, decreasing threefold the concentration required for half-maximal stimulation of respiration. The opposite extreme is the substitution by Ala which increases twofold the half-maximal concentration. We conclude that the C-terminal region participates in the fatty acid regulation of UCP activity. The observed correlation between yeast growth rates in the presence of bromopalmitate and the calculated activation constants for respiration in isolated mitochondria validates growth analysis as a method to screen the in situ activity of UCP mutants.  相似文献   

15.
BACKGROUND/AIMS: Long-term bile duct ligation in rats is associated with secondary biliary cirrhosis and metabolic alterations, e.g. mitochondrial dysfunction. We performed the current studies to characterize the reversibility of hepatic mitochondrial dysfunction after reversing biliary obstruction by Roux-en-Y anastomosis. METHODS: Rats were studied after 4 weeks of bile duct ligation, and after 5 or 14 days of reanastomosis. Control rats were pair-fed to treated rats and all rats were studied after starvation for 24 h. Mitochondria were isolated by differential centrifugation and enzyme activities determined by spectrophotometric methods. RESULTS: In comparison to controls, plasma beta-hydroxybutyrate concentrations were decreased in bile duct ligated rats (200+/-70 vs. 790+/-200 micromol/l) and remained decreased after relief of biliary obstruction. In contrast, plasma free fatty acids were not different between controls and treated rats. Oxidative metabolism of L-glutamate, succinate and duroquinol was decreased in liver mitochondria from bile duct ligated rats. After relief of biliary obstruction, the metabolism of L-glutamate and duroquinol normalized quickly, whereas succinate metabolism remained impaired. Similar results were obtained for the mitochondrial oxidases in disrupted mitochondria. The activities of complex I, II, III and V of the respiratory chain were reduced in bile duct ligated rats. After relief of biliary obstruction, complex I and III normalized quickly, whereas complex II and V remained impaired. Oxidative metabolism of long-chain fatty acids by isolated liver mitochondria was decreased in bile duct ligated rats and did not recover after relief of biliary obstruction. CONCLUSIONS: Long-term cholestasis in the rat is associated with a decrease in specific functions of liver mitochondria which recover only partially after Roux-en-Y anastomosis. The persistence of decreased mitochondrial fatty acid metabolism cannot be explained by impaired activity of the respiratory chain, but is more likely due to alterations in mitochondrial beta-oxidation.  相似文献   

16.
Esterification of fatty acids in rat liver mitochondria was studied following portal or intraperitoneal administration of various 14C-fatty acids. Incorporation of the labelled fatty acid was most marked into phospholipids (especially, phosphatidylcholine and phosphatidylethanolamine) and triglycerides in intact mitochondria and the inner mitochondrial membranes. In contrast, in the outer membranes the injected fatty acids remained free without esterification. It is concluded that esterification of fatty acids occurs in the inner membranes of rat liver mitochondria.  相似文献   

17.
Twin brothers were born with clinical symptoms indicating that they were suffering from Zellweger syndrome. However, instead of a generalized peroxisomal dysfunction, only very long-chain fatty acids and the pristanic acid/phytanic acid ratio were elevated in plasma and decreased oxidation of very long-chain fatty acids and pristanic acid was the only impairment found in fibroblasts. The other peroxisomal parameters tested were normal, including normal oxidation of phytanic acid and normal activity of dihydroxyacetonephosphate acyltransferase in fibroblasts as well as normal plasma bile acids. Although the biochemical results point to a defect in peroxisomal beta-oxidation, the isolated finding of impaired oxidation of very long-chain fatty acids and pristanic acid has to our knowledge not been reported previously and is difficult to explain by a deficiency of a known peroxisomal beta-oxidation enzyme.  相似文献   

18.
19.
Isolated human mitochondrial trifunctional protein was incubated with 2-hexadecenoyl-CoA, CoA and NAD+ and the resultant CoA esters measured. Steady state with respect to the concentrations of the intermediates 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA and the rate of formation of the product tetradecanoyl-CoA was reached within 4 min. Flux was greatly enhanced by the addition of Tween 20 (0.2% v/v) which stimulated 3-ketoacyl-CoA thiolase activity by over 7-fold. When 3-ketoacyl-CoA thiolase was not stimulated, 3-hydroxyhexadecanoyl-CoA was the prominent CoA ester accumulated, presumably due to inhibition of 3-hydroxyacyl-CoA dehydrogenase activity by accumulated 3-ketoacyl-CoA, analogous to the inhibition of short-chain 3-hydroxyacyl-CoA dehydrogenase by 3-ketoacyl-CoA. When [NAD+]/[NADH] was varied at a fixed total [NAD++NADH], the overall flux was only inhibited by [NAD+]/[NADH] less than 1. In contrast, when [acetyl-CoA]/[CoA] was varied at a fixed total [CoA], much greater sensitivity was observed.  相似文献   

20.
In Mycobacterium phlei, fatty acid unsaturation increased with decreasing temperature. The 10-hexadecenoic acid content increased as the temperature was reduced from 35 degrees C to 26-20 degrees C. At lower temperatures tuberculostearic acid decreased while oleic and linoleic acids increased, the latter being found in M. phlei for the first time. Concomitantly palmitic acid content decreased, and the 6- and 9-hexadecenoic acids increased slightly on reducing the temperature from 35 to 10 degrees C. Thus, down to 26-20 degrees C palmitic acid was mainly replaced by 10-hexadecenoic acid. From this range down to 10 degrees C, palmitic and tuberculostearic acids were replaced by oleic and linoleic acids. Consequently, fatty acid branching decreased and mean chain length increased, as the temperature was reduced. These observations support the view that regulation of membrane fatty acid composition is part of microbial temperature adaptation, and that the mechanism behind the responses might be more complex than generally believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号