首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of fast maximum-likelihood estimation (MLE) algorithms for emission computed tomography (ECT) is developed. In these cyclic iterative algorithms, vector extrapolation techniques are integrated with the iterations in gradient-based MLE algorithms, with the objective of accelerating the convergence of the base iterations. This results in a substantial reduction in the effective number of base iterations required for obtaining an emission density estimate of specified quality. The mathematical theory behind the minimal polynomial and reduced rank vector extrapolation techniques, in the context of emission tomography, is presented. These extrapolation techniques are implemented in a positron emission tomography system. The new algorithms are evaluated using computer experiments, with measurements taken from simulated phantoms. It is shown that, with minimal additional computations, the proposed approach results in substantial improvement in reconstruction.  相似文献   

2.
This paper introduces and evaluates a block-iterative Fisher scoring (BFS) algorithm. The algorithm provides regularized estimation in tomographic models of projection data with Poisson variability. Regularization is achieved by penalized likelihood with a general quadratic penalty. Local convergence of the block-iterative algorithm is proven under conditions that do not require iteration dependent relaxation. We show that, when the algorithm converges, it converges to the unconstrained maximum penalized likelihood (MPL) solution. Simulation studies demonstrate that, with suitable choice of relaxation parameter and restriction of the algorithm to respect nonnegative constraints, the BFS algorithm provides convergence to the constrained MPL solution. Constrained BFS often attains a maximum penalized likelihood faster than other block-iterative algorithms which are designed for nonnegatively constrained penalized reconstruction.   相似文献   

3.
We present penalized weighted least-squares (PWLS) and penalized maximum-likelihood (PML) methods for reconstructing transmission images from positron emission tomography transmission data. First, we view the problem of minimizing the weighted least-squares (WLS) and maximum likelihood objective functions as a sequence of nonnegative least-squares minimization problems. This viewpoint follows from using certain quadratic functions as surrogate functions for the WLS and maximum likelihood objective functions. Second, we construct surrogate functions for a class of penalty functions that yield closed form expressions for the iterates of the PWLS and PML algorithms. Due to the slow convergence of the PWLS and PML algorithms, accelerated versions of them are developed that are theoretically guaranteed to monotonically decrease their respective objective functions. In experiments using real phantom data, the PML images produced the most accurate attenuation correction factors. On the other hand, the PWLS images produced images with the highest levels of contrast for low-count data.  相似文献   

4.
Exact and approximate maximum likelihood localization algorithms   总被引:2,自引:0,他引:2  
Sensors at separate locations measuring either the time difference of arrival (TDOA) or time of arrival (TOA) of the signal from an emitter can determine its position as the intersection of hyperbolae for TDOA and of circles for TOA. Because of measurement noise, the nonlinear localization equations become inconsistent; and the hyperbolae or circles no longer intersect at a single point. It is now necessary to find an emitter position estimate that minimizes its deviations from the true position. Methods that first linearize the equations and then perform gradient searches for the minimum suffer from initial condition sensitivity and convergence difficulty. Starting from the maximum likelihood (ML) function, this paper derives a closed-form approximate solution to the ML equations. When there are three sensors on a straight line, it also gives an exact ML estimate. Simulation experiments have demonstrated that these algorithms are near optimal, attaining the theoretical lower bound for different geometries, and are superior to two other closed form linear estimators.  相似文献   

5.
Maximum likelihood reconstruction for emission tomography   总被引:28,自引:0,他引:28  
Previous models for emission tomography (ET) do not distinguish the physics of ET from that of transmission tomography. We give a more accurate general mathematical model for ET where an unknown emission density lambda = lambda(x, y, z) generates, and is to be reconstructed from, the number of counts n(*)(d) in each of D detector units d. Within the model, we give an algorithm for determining an estimate lambdainsertion mark of lambda which maximizes the probability p(n(*)|lambda) of observing the actual detector count data n(*) over all possible densities lambda. Let independent Poisson variables n(b) with unknown means lambda(b), b = 1, ..., B represent the number of unobserved emissions in each of B boxes (pixels) partitioning an object containing an emitter. Suppose each emission in box b is detected in detector unit d with probability p(b, d), d = 1, ..., D with p(b,d) a one-step transition matrix, assumed known. We observe the total number n(*) = n(*)(d) of emissions in each detector unit d and want to estimate the unknown lambda = lambda(b), b = 1, ..., B. For each lambda, the observed data n(*) has probability or likelihood p(n(*)|lambda). The EM algorithm of mathematical statistics starts with an initial estimate lambda(0) and gives the following simple iterative procedure for obtaining a new estimate lambdainsertion mark(new), from an old estimate lambdainsertion mark(old), to obtain lambdainsertion mark(k), k = 1, 2, ..., lambdainsertion mark(new)(b)= lambdainsertion mark(old)(b)Sum of (n(*)p(b,d) from d=1 to D/Sum of lambdainsertion mark()old(b('))p(b('),d) from b(')=1 to B), b=1,...B.  相似文献   

6.
Monotonic algorithms for transmission tomography   总被引:6,自引:0,他引:6  
We present a framework for designing fast and monotonic algorithms for transmission tomography penalized-likelihood image reconstruction. The new algorithms are based on paraboloidal surrogate functions for the log likelihood. Due to the form of the log-likelihood function it is possible to find low curvature surrogate functions that guarantee monotonicity. Unlike previous methods, the proposed surrogate functions lead to monotonic algorithms even for the nonconvex log likelihood that arises due to background events, such as scatter and random coincidences. The gradient and the curvature of the likelihood terms are evaluated only once per iteration. Since the problem is simplified at each iteration, the CPU time is less than that of current algorithms which directly minimize the objective, yet the convergence rate is comparable. The simplicity, monotonicity, and speed of the new algorithms are quite attractive. The convergence rates of the algorithms are demonstrated using real and simulated PET transmission scans.  相似文献   

7.
The EM method that was originally developed for maximum likelihood estimation in the context of mathematical statistics may be applied to a stochastic model of positron emission tomography (PET). The result is an iterative algorithm for image reconstruction that is finding increasing use in PET, due to its attractive theoretical and practical properties. Its major disadvantage is the large amount of computation that is often required, due to the algorithm's slow rate of convergence. This paper presents an accelerated form of the EM algorithm for PET in which the changes to the image, as calculated by the standard algorithm, are multiplied at each iteration by an overrelaxation parameter. The accelerated algorithm retains two of the important practical properties of the standard algorithm, namely the selfnormalization and nonnegativity of the reconstructed images. Experimental results are presented using measured data obtained from a hexagonal detector system for PET. The likelihood function and the norm of the data residual were monitored during the iterative process. According to both of these measures, the images reconstructed at iterations 7 and 11 of the accelerated algorithm are similar to those at iterations 15 and 30 of the standard algorithm, for two different sets of data. Important theoretical properties remain to be investigated, namely the convergence of the accelerated algorithm and its performance as a maximum likelihood estimator.  相似文献   

8.
A family of alternating minimization algorithms for finding maximum-likelihood estimates of attenuation functions in transmission X-ray tomography is described. The model from which the algorithms are derived includes polyenergetic photon spectra, background events, and nonideal point spread functions. The maximum-likelihood image reconstruction problem is reformulated as a double minimization of the I-divergence. A novel application of the convex decomposition lemma results in an alternating minimization algorithm that monotonically decreases the objective function. Each step of the minimization is in closed form. The family of algorithms includes variations that use ordered subset techniques for increasing the speed of convergence. Simulations demonstrate the ability to correct the cupping artifact due to beam hardening and the ability to reduce streaking artifacts that arise from beam hardening and background events.  相似文献   

9.
Developments with maximum likelihood X-ray computed tomography   总被引:1,自引:0,他引:1  
An approach to the maximum-likelihood estimation of attenuation coefficients in transmission tomography is presented as an extension of earlier theoretical work by K. Lange and R. Carson (J. Comput. Assist. Tomography, vol.8, p.306-16, 1984). The reconstruction algorithm is based on the expectation-maximization (EM) algorithm. Several simplifying approximations are introduced which make the maximization step of the algorithm available. Computer simulations are presented using noise-free and Poisson randomized projections. The images obtained with the EM-type method are compared to those reconstructed with the EM method of Lange and Carson and with filtered backprojection. Preliminary results show that there are potential advantages in using the maximum likelihood approaches in situations where a high-contrast object, such as bone, is embedded in low-contrast soft tissue.  相似文献   

10.
This paper reviews and compares three maximum likelihood algorithms for transmission tomography. One of these algorithms is the EM algorithm, one is based on a convexity argument devised by De Pierro (see IEEE Trans. Med. Imaging, vol.12, p.328-333, 1993) in the context of emission tomography, and one is an ad hoc gradient algorithm. The algorithms enjoy desirable local and global convergence properties and combine gracefully with Bayesian smoothing priors. Preliminary numerical testing of the algorithms on simulated data suggest that the convex algorithm and the ad hoc gradient algorithm are computationally superior to the EM algorithm. This superiority stems from the larger number of exponentiations required by the EM algorithm. The convex and gradient algorithms are well adapted to parallel computing.  相似文献   

11.
The maximum likelihood (ML) expectation maximization (EM) approach in emission tomography has been very popular in medical imaging for several years. In spite of this, no satisfactory convergent modifications have been proposed for the regularized approach. Here, a modification of the EM algorithm is presented. The new method is a natural extension of the EM for maximizing likelihood with concave priors. Convergence proofs are given.  相似文献   

12.
We develop algorithms for obtaining regularized estimates of emission means in positron emission tomography. The first algorithm iteratively minimizes a penalized maximum-likelihood (PML) objective function. It is based on standard de-coupled surrogate functions for the ML objective function and de-coupled surrogate functions for a certain class of penalty functions. As desired, the PML algorithm guarantees nonnegative estimates and monotonically decreases the PML objective function with increasing iterations. The second algorithm is based on an iteration dependent, de-coupled penalty function that introduces smoothing while preserving edges. For the purpose of making comparisons, the MLEM algorithm and a penalized weighted least-squares algorithm were implemented. In experiments using synthetic data and real phantom data, it was found that, for a fixed level of background noise, the contrast in the images produced by the proposed algorithms was the most accurate.  相似文献   

13.
The maximum likelihood (ML) approach to estimating the radioactive distribution in the body cross section has become very popular among researchers in emission computed tomography (ECT) since it has been shown to provide very good images compared to those produced with the conventional filtered backprojection (FBP) algorithm. The expectation maximization (EM) algorithm is an often-used iterative approach for maximizing the Poisson likelihood in ECT because of its attractive theoretical and practical properties. Its major disadvantage is that, due to its slow rate of convergence, a large amount of computation is often required to achieve an acceptable image. Here, the authors present a row-action maximum likelihood algorithm (RAMLA) as an alternative to the EM algorithm for maximizing the Poisson likelihood in ECT. The authors deduce the convergence properties of this algorithm and demonstrate by way of computer simulations that the early iterates of RAMLA increase the Poisson likelihood in ECT at an order of magnitude faster that the standard EM algorithm. Specifically, the authors show that, from the point of view of measuring total radionuclide uptake in simulated brain phantoms, iterations 1, 2, 3, and 4 of RAMLA perform at least as well as iterations 45, 60, 70, and 80, respectively, of EM. Moreover, the authors show that iterations 1, 2, 3, and 4 of RAMLA achieve comparable likelihood values as iterations 45, 60, 70, and 80, respectively, of EM. The authors also present a modified version of a recent fast ordered subsets EM (OS-EM) algorithm and show that RAMLA is a special case of this modified OS-EM. Furthermore, the authors show that their modification converges to a ML solution whereas the standard OS-EM does not.  相似文献   

14.
ESM与雷达航迹关联的最大似然估计算法   总被引:4,自引:3,他引:1  
李晓波  王晟达  梁娟 《电光与控制》2007,14(1):46-47,64
为解决ESM与雷达异类传感器的航迹关联问题,基于统计信号分析理论,采用最大似然估计准则,给出了利用ESM与雷达角度测量信息在航迹互联先验概率相等情况下的航迹关联判别函数.同时给出ESM与雷达航迹由等数量观测构成情况下的错误关联概率表达式.最后,由错误关联概率曲线得出了采取减小雷达航迹测量误差与ESM航迹测量误差比值和增加测量次数等措施可以减小错误关联概率的结论.  相似文献   

15.
A recently proposed approach to the inverse problem of detecting the presence and estimating the location of a known object from data collected in a set of diffraction tomographic experiments is evaluated. Experimental data are used to validate of the filtered backpropagation algorithms used, and their robustness to modeling errors and to severe limitations in the angular coverage of the tomographic data is demonstrated. A potential application to medical imaging of soft tissue is illustrated.  相似文献   

16.
Hwang  J.K. Chen  Y.C. 《Electronics letters》1990,26(23):1969-1970
A highly concurrent Gram-Schmidt procedure based on the Schur recursions is proposed for computing the ML criterion of some superimposed signals problems. This approach greatly reduces the computational burden and leads to a pipelined combiner-lattice structure which can compute the ML criterion in real time.<>  相似文献   

17.
The authors present results on the analysis of two generic cone-shaped and wedge-shaped emitter-array diodes. The effects of the variations in device geometrical structure on the potential distribution, electric field, and emission current are discussed. The main geometric design parameters considered are the tip-to-collector distance, the emitter tip radius of curvature, and the intertip spacing. Pressure sensors based on these diode structures with one electrode fabricated on a pressure sensitive thin diaphragm were studied. The analysis shows that a cone-shaped emitter array has a larger emission current per emitter tip, but the wedge-shaped array has better pressure sensitivity  相似文献   

18.
The fractal dimension estimate for two-variable fractional Brownian motion using the maximum likelihood estimate (MLE) is developed. We formulate a model to describe the two-variable fractional Brownian motion, then derive the likelihood function for that model and estimate the fractal dimension by maximizing the likelihood function. We then compare the MLE with the box-dimension estimation method.  相似文献   

19.
Efficient algorithms are derived for maximum likelihood (ML) soft-decision decoding of some binary self-dual codes. A family of easily decodable self-dual codes is derived by modifying a known F24, which has a weight distribution resembling that of the [24, 12, 8] Golay code G24. The ML decoding of F24 is accomplished by only 227 real additions, compared to 651 required for G24, yet the error rates of the two decoders are similar for moderate noise conditions  相似文献   

20.
The expectation maximization method for maximum likelihood image reconstruction in emission tomography, based on the Poisson distribution of the statistically independent components of the image and measurement vectors, is extended to a maximum aposteriori image reconstruction using a multivariate Gaussian a priori probability distribution of the image vector. The approach is equivalent to a penalized maximum likelihood estimation with a special choice of the penalty function. The expectation maximization method is applied to find the a posteriori probability maximizer. A simple iterative formula is derived for a penalty function that is a weighted sum of the squared deviations of image vector components from their a priori mean values. The method is demonstrated to be superior to pure likelihood maximization, in that the penalty function prevents the occurrence of irregular high amplitude patterns in the image with a large number of iterations (the so-called "checkerboard effect" or "noise artifact").  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号