首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A semi-analytical analysis for the transient elastodynamic response of an arbitrarily thick simply supported beam due to the action of an arbitrary moving transverse load is presented, based on the linear theory of elasticity. The solution of the problem is derived by means of the powerful state space technique in conjunction with the Laplace transformation with respect to the time coordinate. The inversion of Laplace transform has been carried out numerically using Durbin??s approach based on Fourier series expansion. Special convergence enhancement techniques are invoked to completely eradicate spurious oscillations and obtain uniformly convergent solutions. Detailed numerical results for the transient vibratory responses of concrete beams of selected thickness parameters are obtained and compared for three types of harmonic moving concentrated loads: accelerated, decelerated and uniform. The effects of the load velocity, pulsation frequency and beam aspect ratio on the dynamic response are examined. Also, comparisons are made against solutions based on Euler?CBernoulli and Timoshenko beam models. Limiting cases are considered, and the validity of the model is established by comparison with the solutions available in the existing literature as well as with the aid of a commercial finite element package.  相似文献   

2.
Benchmark solutions to the problem of buckling of orthotropic cylindrical shells, which are based on the three-dimensional theory of elasticity, are presented in this review article. It is assumed that the shell is under external pressure or axial compression or a combination of these loadings. These solutions provide a means of accurately assessing the limitations of the various shell theories in predicting critical loads. A comparison with some classical shell theories shows that the classical shell theories may produce, in general, highly non-conservative results on the critical load of composite shells with thick construction. One noteworthy exception: the Timoshenko shell buckling equations produce conservative results under pure axial compression.  相似文献   

3.
4.
This work investigates the free vibrations of magneto-electro-elastic cylindrical panels based on three-dimensional theory. Firstly, the general solutions for transversely isotropic magneto-electro-elastic materials are introduced and the displacement functions in the general solutions are expanded in trigonometric functions along the circumferential and axial directions. Then an ordinary differential equation of the displacement functions in radial direction is derived and solved. As a result, the frequency equations are obtained through the traction-free conditions on the cylindrical surfaces of the panel as well as the electric and magnetic conditions. For the torsion and thickness-shear modes, the frequency equations in simpler forms are presented. It is found that the magneto-electro-elastic coupling effects disappeared in torsion vibration. Meanwhile, the frequencies of pure elastic materials and magneto-electro-elastic materials have an explicit relation for the thickness-shear modes. The aforementioned solutions satisfy all the governing equations and boundary conditions point by point and they are three-dimensionally exact. Finally the numerical example demonstrates the present method and is compared with those from finite element method. Parametric investigation is also conducted to show the behavior of free vibrations of cylindrical panels.  相似文献   

5.
An exact elasticity solution is presented for the free and forced vibration of functionally graded cylindrical shells. The functionally graded shells have simply supported edges and arbitrary material gradation in the radial direction. The three-dimensional linear elastodynamics equations, simplified to the case of generalized plane strain deformation in the axial direction, are solved using suitable displacement functions that identically satisfy the boundary conditions. The resulting system of coupled ordinary differential equations with variable coefficients are solved analytically using the power series method. The analytical solution is applicable to shallow as well as deep shells of arbitrary thickness. The formulation assumes that the shell is made of a cylindrically orthotropic material but it is equally applicable to the special case of isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced composite materials. The homogenized elastic stiffnesses of isotropic materials are estimated using the self-consistent scheme. In the case of fiber-reinforced materials, the effective properties are obtained using either the Mori–Tanaka or asymptotic expansion homogenization (AEH) methods. The fiber-reinforced composite material studied in the present work consists of silicon-carbide fibers embedded in titanium matrix with the fiber volume fraction and fiber orientation graded in the radial direction. The natural frequencies, mode shapes, displacements and stresses are presented for different material gradations and shell geometries.  相似文献   

6.
7.
8.
Elishakoff  I. 《Acta Mechanica》1977,28(1-4):165-176
Acta Mechanica - An approximate method is presented for determining the probabilistic response of rectangular orthotropic plates clamped all round. For solving the stochastic boundary value...  相似文献   

9.
This paper presents an analytical procedure and closed-form vibration solutions with analytically determined coefficients for orthotropic circular cylindrical shells having classical boundary conditions. This analysis is based upon the Donnell-Mushtari shell theory. This is the simplest thin shell theory and its results for the lowest frequencies of a closed cylinder may not be as accurate. It is known that the exact procedure is complicated for orthotropic shells and this complexity has apparently prevented most researchers from getting results. Using the separation of variables method, the closed-form natural frequencies are successfully obtained in this work. They are found in a compact form. Moreover, the characteristics of the eigenvalues are examined. The exact solutions are validated through numerical comparisons with available solutions in literatures and the semi-analytical differential quadrature finite element method (S-DQFEM) solutions calculated by the authors.  相似文献   

10.
Parametric instability of thick,orthotropic, circular cylindrical shells   总被引:4,自引:0,他引:4  
Summary The dynamic instability of simply supported, finite-length, circular cylindrical shells subjected to parametric excitation by axial loading, is investigated analytically. The shell is taken to be orthotropic, due to closely spaced longitudinal and/or circumferential stiffeners or to many layers of fiber-reinforced composite material either oriented at angles of 0° and 90° (cross-ply) or at + and – (angle-ply) with respect to the shell axis. The theory used is a general first-order shear deformable shell theory introduced by Hsu, Reddy, and Bert; it can be considered to be the thick-shell version of the popular Sanders-Koiter thin-shell theory. By means of tracers, this theory can be reduced to thick-shell versions of the theories of Love (and Loo) and of Donnell (and Morley). Quantitative results are presented to show the effects of shell geometry, materials, and fiber orientation on the stability boundaries.With 10 FiguresA considerably abbreviated version of this paper was presented at Euromech Colloquium 219 on Refined Dynamical theories of Beams, Plates and Shells and Their Applications, Universität-Gesamthochschule Kassel, Federal Republic of Germany, September 23–26, 1986.  相似文献   

11.
The static buckling of orthotropic composite cylindrical shells, under circumferentially non-uniform axial loads is investigated based on Flügge-type field equations. Use of a complex finite Fourier transform provides a simple method for handling any arbitrary non-uniform load but introduces modal coupling between the transformed equations. For simply supported boundaries (conditions SS3) the determination of the critical buckling load reduces to finding the eigenvalues of a finite matrix. Three different non-uniform loads are considered, having forms proportional to (1 + 2cosθ), cosθ and (θ* − θ) where is the Heaviside function, θ is the circumferential coordinate and aθ* is the width of an axially loaded strip of the shell of radius a. Computed results indicate the sensitivity of the critical buckling loads to the type of non-uniform load and the material lay-ups of the cylinders.  相似文献   

12.
The system of three partial differential equations with respect to displacements (Donnell equations) is used to analyze nonlinear vibrations of a cylindrical shell. The Galerkin method is applied to every partial differential equation to obtain a finite-degree-of-freedom model of the shell. The system of ordinary differential equations with respect to the general coordinates of the radial shell displacements is derived. The nonlinear modes of free vibrations are calculated using the harmonic balance method. The stability analysis of periodic motions is performed.  相似文献   

13.
An analytical study on the dynamic behavior of an infinitely long, non-homogenous orthotropic cylindrical shell resting on elastic foundations subjected to combined action of the axial tension, internal compressive load and ring-shaped compressive pressure with constant velocity is presented. The problem is studied on the basis of the theory of vibrations of cylindrical shells. Formulas are derived for the maximum static and dynamic displacements, dynamic factors and critical velocity for homogenous and non-homogenous orthotropic cylindrical shells on Winkler or Pasternak elastic foundations and subjected to moving loads. A parametric study is conducted to demonstrate the effects of various parameters, such as Winkler or Pasternak foundations, the non-homogeneity and orthotropy of materials, the radius-to-thickness ratio and the velocity of the moving load on the dynamic displacements, dynamic factors and critical values of the velocity for cylindrical shells.  相似文献   

14.
15.
A semi-analytical finite element method is used to determine the free vibration characteristics of thin orthotropic cantilever circular cylindrical shells. Love's first approximation shell theory is used for the formulation. The effect of the variation of thickness along the axial direction on natural frequencies, especially on the lowest frequency, has been studied with a constraint on the total mass of the shell for a particular length to middle surface radius ratio. Studies have been conducted for different degrees of orthotropy and various values of length to radius ratio.  相似文献   

16.
为了应用弹性力学中的Hamilton 正则方程研究压电材料的灵敏度系数问题,基于压电材料的H-R(Hellinger-Reissner) 变分原理,简要地导出Hamilton正则方程算子表达式,建立了四边简支板静力学控制方程。根据灵敏度定义,在静力学控制方程的基础上联立灵敏度控制方程,得到了增维的齐次压电材料静力响应和灵敏度系数混合控制方程。应用该方程可以同时求得压电层合板的力学、电学参量及其灵敏度。该算法过程简单、运算效率和稳定性好。数值算例结果与有限差分法的结果比较表明本文方法切实有效。   相似文献   

17.
A benchmark three-dimensional (3D) exact piezoelasticity solution is presented for free vibration and steady state forced response of simply supported smart cross-ply circular cylindrical shells of revolutions and panels integrated with surface-bonded or embedded monolithic piezoelectric or piezoelectric fiber reinforced composite (PFRC) layers. The effective properties of PFRC laminas for the 3D case are obtained based on a fully coupled iso-field model. The governing partial differential equations are reduced to ordinary differential equations in the thickness coordinate by expanding all entities for each layer in double Fourier series in span coordinates, which identically satisfy the boundary conditions at the simply-supported ends. These equations with variable coefficients are solved using the modified Frobenius method, wherein the solution is constructed as a product of an exponential function and a power series. The unknown constants of the general solution are finally obtained by employing the transfer matrix method across the layers. Results for natural frequencies and the forced response are presented for single layer piezoelectric and multilayered hybrid composite and sandwich shells of revolution and shell panels integrated with monolithic piezoelectric and PFRC actuator/sensor layers. The present benchmark solution would help assess 2D shell theories for dynamic response of hybrid cylindrical shells.  相似文献   

18.
研究了正交各向异性功能梯度板的三维弯曲问题。假设材料参数沿板厚方向按同一函数规律变化,基于状态空间法,在板的上下表面作用机械载荷的情况下,获得了简支功能梯度平板弯曲问题的Peano-Baker 级数解。通过算例,验证了 Peano-Baker级数解的正确性,同时也分析了材料参数沿板厚方向为余弦函数分布时,不同梯度参数对平板响应的影响。结果表明Peano-Baker 级数解具有很好的收敛性。  相似文献   

19.
Dynamic buckling of an orthotropic cylindrical shell which is subjected to rapidly applied compression is considered. A nonlinear differential equation of Donnell–Karman type is derived with the initial imperfection taken into account. An energy method is used to obtain the equation of motion which is then solved numerically by means of a Runge-Kutta method. These numerical results show that the critical load is increased over the corresponding static case. An analytical solution is also obtained for the problem of hydrostatic pressure.  相似文献   

20.
The vibrational response of orthotropic composite cylindrical shells, subjected to circumferentially nonuniform axial loads, is investigated based on Flügge-type field equations. The use of a complex finite Fourier transform provides a simple method for handling any arbitrary nonuniform load but introduces modal coupling between the transformed equations. For simply supported boundaries (conditions SS3) the determination of the critical buckling load reduces to finding the eigenvalues of a finite matrix. Two different nonuniform loads are considered, having forms proportional to (1+2cos θ) and (θ*−θ), where is the Heaviside function, θ is the circumferential coordinate and aθ* is the width of an axial strip of the shell of radius a. Computed results indicate the sensitivity of the critical buckling loads and free vibrational frequency to the type of nonuniform load and the material lay-ups of the cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号