首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Multiple-instruction multiple-data (MIMD) algorithms that use multiple processors to do median splitting, k-splitting and parallel splitting into t equal sections are presented. Both concurrent read, exclusive write (CREW) and exclusive read, exclusive write (EREW) versions of the algorithms are given. It is shown that a k-splitting problem can be easily converted into a median-splitting problem. Methods for finding multiple split points quickly and application of k-splitting to merging and sorting are discussed  相似文献   

2.
Structural controllability of time-invariant and time-varying systems when the input control sequences have a restricted length k is compared. The dimensions of controllable space coincide in the following three special cases: the input sequences have length k=2; the input sequences have k=n, where n is the size of the system (i.e., the ultimate controllability is the same in both cases); and for every length of input sequences provided that the system has a single input only. It is proved that there may appear a gap for every input length k such that 2< kn/2. The case when n/2<k<n is left open  相似文献   

3.
The author considers the design of observers for the discrete singular system Ex(k+1)=Ax(k)+Bu (k), y(k)=Cx(k), placing special emphasis on the problems of state reconstruction and minimal-time state reconstruction. It is shown that for a singular system, finite poles can be moved to infinity by state feedback and the state can be reconstructed by causal observers  相似文献   

4.
A mechanism for scheduling communications in a network in which individuals exchange information periodically according to a fixed schedule is presented. A proper k edge-coloring of the network is considered to be a schedule of allowed communications such that an edge of color i can be used only at times i modulo k. Within this communication scheduling mechanism, the information exchange problem known as gossiping is considered. It is proved that there is a proper k edge-coloring such that gossip can be completed in a path of n edges in a certain time for nk⩾1. Gossip can not be completed in such a path any earlier under any proper k edge-coloring. In any tree of bounded degree Δ and diameter d, gossip can be completed under a proper Δ edge-coloring in time (Δ-1)d +1. In a k edge-colored cycle of n vertices, other time requirements of gossip are determined  相似文献   

5.
An algorithm for convolving a k×k window of weighting coefficients with an n×n image matrix on a pyramid computer of O(n2) processors in time O(logn+k2), excluding the time to load the image matrix, is presented. If k=Ω (√log n), which is typical in practice, the algorithm has a processor-time product O(n 2 k2) which is optimal with respect to the usual sequential algorithm. A feature of the algorithm is that the mechanism for controlling the transmission and distribution of data in each processor is finite state, independent of the values of n and k. Thus, for convolving two {0, 1}-valued matrices using Boolean operations rather than the typical sum and product operations, the processors of the pyramid computer are finite-state  相似文献   

6.
The condition under which it is possible to find a single controller that stabilizes k single-input single-output linear time-invariant systems pi(s) (i=1,. . .,k) is investigated. The concept of avoidance in the complex plane is introduced and used to derive a sufficient condition for k systems to be simultaneously stabilizable. A method for constructing a simultaneous stabilizing controller is also provided and is illustrated by an example  相似文献   

7.
Out-of-roundness problem revisited   总被引:4,自引:0,他引:4  
The properties and computation of the minimum radial separation (MRS) standard for out-of-roundness are discussed. Another standard out-of-roundness measurement called the minimum area difference (MAD) center is introduced. Although the two centers have different characteristics, the approach to finding both centers shares many commonalities. An O(n log n+k) time algorithm which is used to compute the MRS center is presented. It also computes the MAD center of a simple polygon G, where n is the number of vertices of G, and k is the number of intersection points of the medial axis and the farthest-neighbor Voronoi diagram of G. The relationship between MRS and MAD is discussed  相似文献   

8.
Let φ(s,a)=φ0(s,a)+ a1φ1(s)+a2 φ2(s)+ . . .+akφ k(s)=φ0(s)-q(s, a) be a family of real polynomials in s, with coefficients that depend linearly on parameters ai which are confined in a k-dimensional hypercube Ωa . Let φ0(s) be stable of degree n and the φi(s) polynomials (i⩾1) of degree less than n. A Nyquist argument shows that the family φ(s) is stable if and only if the complex number φ0(jω) lies outside the set of complex points -q(jω,Ωa) for every real ω. In a previous paper (Automat. Contr. Conf., Atlanta, GA, 1988) the authors have shown that -q(jω,Ωa ), the so-called `-q locus', is a 2k convex parpolygon. The regularity of this figure simplifies the stability test. In the present paper they again exploit this shape and show that to test for stability only a finite number of frequency checks need to be done; this number is polynomial in k, 0(k3), and these critical frequencies correspond to the real nonnegative roots of some polynomials  相似文献   

9.
An efficient processor allocation policy is presented for hypercube computers. The allocation policy is called free list since it maintains a list of free subcubes available in the system. An incoming request of dimension k (2k nodes) is allocated by finding a free subcube of dimension k or by decomposing an available subcube of dimension greater than k. This free list policy uses a top-down allocation rule in contrast to the bottom-up approach used by the previous bit-map allocation algorithms. This allocation scheme is compared to the buddy, gray code (GC), and modified buddy allocation policies reported for the hypercubes. It is shown that the free list policy is optimal in a static environment, as are the other policies, and it also gives better subcube recognition ability compared to the previous schemes in a dynamic environment. The performance of this policy, in terms of parameters such as average delay, system utilization, and time complexity, is compared to the other schemes to demonstrate its effectiveness. The extension of the algorithm for parallel implementation, noncubic allocation, and inclusion/exclusion allocation is also given  相似文献   

10.
The problem of electing a leader in a dynamic ring in which processors are permitted to fail and recover during election is discussed. It is shown that &thetas;(n log n+kr) messages, counting only messages sent by functional processors, are necessary and sufficient for dynamic ring election, where kr is the number of processor recoveries experienced  相似文献   

11.
The problem to be solved involves a highway automation project. The overall system consists of N vehicles (the platoon). Each vehicle is driven by the same input u and the state of the kth vehicle affects the dynamics of the (k+1)th vehicle. Furthermore, the dynamics of each vehicle is affected by its (local) state-feedback controller. Under very general conditions, it is shown that for sufficiently slowly varying inputs, decentralized controllers can be designed so that the platoon maintains its cohesion  相似文献   

12.
A nonsymmetric deadlock-free mutual exclusion algorithm for computer networks is presented. The algorithm requires O(m ) messages to synchronize m modes in a lightly loaded system, and the performance approaches a constant k dependent on m as the workload increases. In a medium to heavily loaded system, it outperforms other proposed algorithms and its performance is independent of network topology  相似文献   

13.
An efficient digital search algorithm that is based on an internal array structure called a double array, which combines the fast access of a matrix form with the compactness of a list form, is presented. Each arc of a digital search tree, called a DS-tree, can be computed from the double array in 0(1) time; that is to say, the worst-case time complexity for retrieving a key becomes 0(k) for the length k of that key. The double array is modified to make the size compact while maintaining fast access, and algorithms for retrieval, insertion, and deletion are presented. If the size of the double array is n+cm, where n is the number of nodes of the DS-tree, m is the number of input symbols, and c is a constant particular to each double array, then it is theoretically proved that the worst-case times of deletion and insertion are proportional to cm and cm2, respectively, and are independent of n. Experimental results of building the double array incrementally for various sets of keys show that c has an extremely small value, ranging from 0.17 to 1.13  相似文献   

14.
Most existing methods of mapping algorithms into processor arrays are restricted to the case where n-dimensional algorithms, or algorithms with n nested loops, are mapped into (n-1)-dimensional arrays. However, in practice, it is interesting to map n-dimensional algorithms into (k-1)-dimensional arrays where k<n. A computational conflict occurs if two or more computations of an algorithm are mapped into the same execution time. Based on the Hermite normal form of the mapping matrix, necessary and sufficient conditions are derived to identify mapping without computational conflicts. These conditions are used to find time mappings of n-dimensional algorithms into (k-1)-dimensional arrays, k<n , without computational conflicts. For some applications, the mapping is time-optimal  相似文献   

15.
A new parallel algorithm is proposed for fat image labeling using local operators on image pixels. The algorithm can be implemented on an n×n mesh-connected computer such that, for any integer k in the range [1, log (2n)], the algorithm requires Θ(kn1k/) bits of local memory per processor and takes Θ(kn) time. Bit-serial processors and communication links can be used without affecting the asymptotic time complexity of the algorithm. The time complexity of the algorithm has very small leading constant factors, which makes it superior to previous mesh computer labeling algorithms for most practical image sizes (e.g. up to 4096×4096 images). Furthermore, the algorithm is based on using stacks that can be realized using very fast shift registers within each processing element  相似文献   

16.
Considers the problem of determining whether each point in a polytope n×n matrices is stable. The approach is to check stability of certain faces of the polytope. For n⩾3, the authors show that stability of each point in every (2n-4)-dimensional face guarantees stability of the entire polytope. Furthermore, they prove that, for any kn2, there exists a k-dimensional polytope containing a strictly unstable point and such that all its subpolytopes of dimension min {k-1,2n-5} are stable  相似文献   

17.
A parallel sorting algorithm for sorting n elements evenly distributed over 2d p nodes of a d-dimensional hypercube is presented. The average running time of the algorithm is O((n log n)/p+p log 2n). The algorithm maintains a perfect load balance in the nodes by determining the (kn/p)th elements (k1,. . ., (p-1)) of the final sorted list in advance. These p-1 keys are used to partition the sorted sublists in each node to redistribute data to the nodes to be merged in parallel. The nodes finish the sort with an equal number of elements (n/ p) regardless of the data distribution. A parallel selection algorithm for determining the balanced partition keys in O(p log2n) time is presented. The speed of the sorting algorithm is further enhanced by the distance-d communication capability of the iPSC/2 hypercube computer and a novel conflict-free routing algorithm. Experimental results on a 16-node hypercube computer show that the sorting algorithm is competitive with the previous algorithms and faster for skewed data distributions  相似文献   

18.
Methods of calculating efficiently the performance measures of parallel systems by using unbounded generalized stochastic Petri nets are presented. An explosion in the number of states to be analyzed occurs when unbounded places appear in the model. The state space of such nets is infinite, but it is possible to take advantage of the natural symmetries of the system to aggregate the states of the net and construct a finite graph of lumped states which can easily be analyzed. With the methods developed, the unbounded places introduce a complexity similar to that of safe places of the net. These methods can be used to evaluate models of open parallel systems in which unbounded places appear; systems which are k-bounded but are complex and have large values of k can also be evaluated in an appropriate way. From the steady-state solution of the model, it is possible to obtain automatically the performance measures of parallel systems represented by this type of net  相似文献   

19.
Theorems for order-determination without a priori knowledge of upper bounds on the order in MIMO dynamic systems are developed. Also, deterministic procedures are introduced to determine orders and estimate parameters simultaneously by recursively computing the order-determining quantity Sn(a,b,k), which plays a crucial role in order-determination procedures, and the least-squares estimate &thetas;n(a,b) of &thetas;(p,q), with p and q denoting the true orders  相似文献   

20.
Squared error clustering algorithms for single-instruction multiple-data (SIMD) hypercubes are presented. The algorithms are shown to be asymptotically faster than previously known algorithms and require less memory per processing element (PE). For a clustering problem with N patterns, M features per pattern, and K clusters, the algorithms complete in O(k+log NM ) steps on NM processor hypercubes. This is optimal up to a constant factor. These results are extended to the case in which NMK processors are available. Experimental results from a multiple-instruction, multiple-data (MIMD) medium-grain hypercube are also presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号