首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摘要:为了研究DP600钢的焊接性能,采用5种不同的激光焊接工艺进行焊接试验。结果表明,焊接接头表面成形质量良好,随着热输入的增加,上下熔宽逐渐增大;熔融区均为板条状马氏体组织,当热输入高于33J/mm时热影响区组织为马氏体、铁素体和少量的回火马氏体;当热输入低于33J/mm时,热影响区组织为马氏体和铁素体。在低热输入条件下,回火时间很短,马氏体未发生分解;在高的热输入条件下,回火时间较长,马氏体分解显著,热影响区中出现M3C型碳化物,碳化物形貌以球状和片状为主。从熔融区到母材,显微硬度值逐渐降低;焊接接头静态拉伸失效位置均在母材,拉伸断口为韧性断口,DP600钢激光焊接接头不存在软化现象。  相似文献   

2.
Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.  相似文献   

3.
For the study of the DP980 steel high cycle fatigue property, high fatigue tests of DP980 steel and DP980 steel laser welded joints were carried out with fatigue testing machine, the Basquin equation was concluded. Microstructures and fractures were analyzed by optical microscope and scanning electron microscope. The results show that DP980 steel laser welding joints have the weld concavity at the welding root and top, the quality of welded joints is medium. The fatigue limit of DP980 steel is 341MPa, the fatigue limit of DP980 steel laser welded joint is 148MPa, the fatigue limit decreases by 50% compared with the fatigue limit of the base metal. For DP980 steel, the crystal boundary of the ferrite/martensite is the main location of micro cracks initiation, the fatigue fracture of DP980 steel is the quasi cleavage fracture. For DP980 steel laser welding joints, the fatigue cracks initiation is located in the weld concavity, not in the heat affected zone, the fatigue fracture is cleavage fracture. DP980 steel and DP980 steel laser welding joints crack propagation is characterized by the obviously fatigue striations coupled with secondary cracks.  相似文献   

4.
摘要:为了研究DP980钢的高周疲劳性能,采用疲劳试验机对DP980钢和DP980钢激光焊接接头进行高周疲劳试验,得到Basquin方程,并利用光学金相显微镜和扫描电镜进行组织和断口分析。结果表明:DP980钢激光焊接接头的焊缝根部和顶部出现形状凹陷,焊接接头的质量为中等。DP980钢疲劳极限为341MPa,DP980钢激光焊接接头的疲劳极限为148MPa,激光焊接接头的疲劳极限较母材的疲劳极限降低约50%。对于DP980钢而言,铁素体/马氏体晶界是裂纹萌生的主要位置,疲劳断口为准解理断口。对于DP980钢激光焊接接头而言,疲劳裂纹源位于焊缝凹陷处,而非热影响区及母材,疲劳断口为解理断口。DP980钢和DP980钢激光焊接接头的疲劳裂纹扩展区均有明显的疲劳条带,并伴随有二次裂纹。  相似文献   

5.
Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite. Formerly Adjunct Research Professor with the Materials Engineering Group, Naval Postgraduate School Formerly Graduate Student at NPS  相似文献   

6.
This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.  相似文献   

7.
李敏 《山东冶金》2013,(5):32-34
按照EN 10225-2009附录E标准要求,采用50 kJ/cm大热输入埋弧焊工艺焊接厚为100 mm海洋平台用EH36钢板,测试分析了焊态及焊后热处理态焊接接头的组织与性能。结果表明,无论焊态还是焊后热处理态,EH36厚钢板焊接接头的硬度HV10≤280,抗拉强度≥510 MPa,-40℃冲击功均值≥50 J,表面组织以粗大的板条状贝氏体+少量粒状贝氏体为主,心部组织以细小的铁素体+珠光体为主,表明济钢开发的EH36厚钢板满足海洋平台的焊接生产要求。焊接接头表面与心部熔合线形状及传热状态的差异,是导致表面HAZ晶粒比心部粗大、因而表面韧性低于心部的主要原因。  相似文献   

8.
The influence of bake hardening on the mechanical properties of laser welded dual phase steel was investigated. A remarkalbe increase of the hardness in the zone influenced by laser welding was observed. The fusion zone had a low carbon lath martensite microstructure. The laser weld region had a higher interstitial carbon content than the base material. The dual phase steel exhibited a clear bake hardening effect in both the as‐received and the laser‐welded conditions. The bake hardening effect is more pronounced in the prestrained laser welded condition. A pronounced decrease of the ductility was observed for prestrained laser welded DP steel.  相似文献   

9.
CSP流程生产经济型热轧双相钢的工艺与组织性能   总被引:1,自引:0,他引:1  
韩斌  谭文  汪水泽  张超  蔡晓辉 《钢铁》2011,46(12):44-48
 为了在CSP产线上开发新一代经济型热轧双相钢,并确定生产的最佳成分和工艺,介绍了在武钢CSP生产线进行580MPa级热轧双相钢的工业化生产试制情况。分别采用C-Mn-Si系和C-Mn-Si-Cr系钢为原料,通过控制轧制和基于超强冷却设备的控制冷却工艺,成功开发出抗拉强度580MPa级热轧双相钢。通过比较分析2种成分钢的力学性能和微观组织,结果表明:经济型的C-Mn-Si系钢相对于C-Mn-Si-Cr系钢具有屈服强度低、屈强比小、伸长率大的特点,虽然马氏体量相对较少,但具有马氏体呈岛状更加均匀分布在铁素体晶界上等典型双相钢的特征,同时提出了生产过程中控制铁素体析出量和促进马氏体形成的具体措施。  相似文献   

10.
为了研究DP980钢的焊接性能,采用3种不同的激光焊接工艺进行焊接试验。结果表明,熔融区为板条马氏体,热影响区为马氏体、铁素体和回火马氏体,随着热输入增加,上下表面的熔宽逐渐增大,强塑积逐渐减小,热影响区的软化程度逐渐恶化。从熔融区到母材,显微硬度的变化趋势是先降低后升高。焊接接头静态拉伸失效位置均在亚临界热影响区,拉伸断口为韧性断口,随着热输入增加,杯状韧窝逐渐转变为较大的抛物线状韧窝,通过分析不同热输入条件下焊接接头的静态拉伸应变场云图,可知在塑性变形阶段,熔融区两侧呈双峰形貌,随着热输入的增加,软化区的面积逐渐增大,颈缩易出现在熔融区两侧的软化区部位。  相似文献   

11.
Advanced high strength steel (AHSS) has been widely used in the automobile industry.The resistance spot welding performance of DP980 and Q&P980 steels was studied through comparing the two steels’welding current range,tensile shear strength (TSS),cross tension strength (CTS),weld spots’microhardness,etc.The following conclusions were achieved:It is easy for both DP980 and Q&P980 steels to get a nugget size bigger than 4 mm,they all have welding current ranges exceeding 2 kA and high weld strength.  相似文献   

12.
Dual‐phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5~20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ).  相似文献   

13.
The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.  相似文献   

14.
The butt welding of bimetal composite pipes generally adopts single-side welding, which easily gives rise to the problems such as high cost or crack initiation. In this paper, the butt welding of L415/316L bimetal mechanical lined pipes was conducted using post-internal-welding process, which is double-side welding process, proposed by the authors. Firstly, the effect of groove shape on the weld process was discussed. Then, microstructures and mechanical and corrosion-resistance properties of welded joints welded using two different welding materials, 309MoL and 309L, were investigated. The results show that the most suitable groove is that L415 is V shape with angle of 60° and blunt edge of 1 mm and 316L is stripped 6–8 mm. The weld of both 309MoL and 309L is composed of austenite and a small amount of ferrite, but the presence of Mo can refine the grains and increase the content of ferrite phase. The width of transition layer is about 0.6–0.8 mm located at the weld junction of stainless steel weld and carbon steel weld, and the transition layer mainly contains martensite. The tensile and bending performances of the welded joints using both 309MoL and 309L do meet the standard requirements. The welding wire 309MoL can improve the corrosion resistance to Cl− compared to 309L. It is advisable to use the post-internal-welding process and 309MoL for the welding of bimetal composite pipes under environments containing Cl−.  相似文献   

15.
In this paper, resistance spot weldability of high‐Mn steels were investigated in order to get high reliability in welded joints of automotive components. Microstructural characterizations, cross‐tensile test (CTT), microhardness tests of spot welded parts were conducted. The effects of weld current on the microstructural characteristics, mechanical properties, and fracture modes were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The hardness in the weld nugget was observed to be lower than that in the base metal (BM). In CTT, the failure initiation was observed to occur at the boundary of the weld nugget. Also welding imperfections of welded parts were investigated. Liquation cracking in heat affected zone (HAZ), porosity, and shrinkage cavity were found most common welding defects in welded parts. Furthermore, the effects of welding imperfections on weld quality and failure criteria were identified and discussed.  相似文献   

16.
High rate welding methods for sheet material can offer significant cost reduction for mass production application in comparison with more conventional arc processes. Therefore, in this research, laser welds in SAF 2205 duplex stainless steel (DSS) sheets welded using different welding speeds were investigated. Metallography, texture measurements and mechanical testing were carried out on the weld joints. The corrosion properties were not evaluated. The base material was characterised by a bamboo‐like morphology and a ferrite volume fraction of 53 %. For all welding speeds, the ferrite level in the weld zone was higher than 85 % and the austenite showed an acicular morphology. Whereas in the base material a clear element partitioning existed between ferrite and austenite, no partitioning was observed in the welded zone. This is due to the very high cooling rates, which limit the amount of diffusion that can take place. Electron backscattering diffraction revealed that the texture of the cold rolled material was destroyed by the welding process. While the hardness of the base material was about 265 HV, the maximal hardness in the fusion zone exceeded 310 HV and increased with an increase of the welding speed. Yield and tensile stength were however not dramatically influenced. On the other hand, the formability properties were deteriorated by an increase of the welding speed. This behaviour can also be observed on the fracture surfaces of tensile specimens. The tensile tests on the welded sheet resulted in ductile fracture surfaces, but an easier void formation was observed in the laser welds. However, it has to be pointed out that formability of the laser welded DSS sheets is acceptable when a lower welding speed is used. This is also confirmed by the crack propagation observed during the Erichsen test. Therefore, the laser welding can be used as a joining operation for DSS sheet materials providing the corrosion requirements are fulfilled.  相似文献   

17.
在不同焊接参数下分别通过Φ3 mm E4303碳钢焊条(/%:≤0.12C、≤0.25Si、0.30~0.60Mn)和Φ1mm H10MnSi焊丝(/%:0.14C、0.65~0.95Si、0.80~1.10Mn)对3.8 mm DP590钢薄板(/%:0.07C、0.45Si、1.61 Mn)进行手工电弧焊接和CO2气体保护焊接,并利用ZEISS光学显微镜、LEICA显微硬度计分别对焊接接头的组织和显微硬度进行了观察和分析。结果表明,在焊缝区手工电弧焊焊缝组织为沿柱状晶分布的先共析铁素体和珠光体,CO2气体保护焊为针状铁素体和少量贝氏体,在粗晶区手工电弧焊为贝氏体和先共析铁素体,CO2气体保护焊为板条马氏体和贝氏体,且其粗晶区晶粒尺寸大于手工电弧焊;采用CO2气体保护焊,选择较大的热输入,焊缝和粗晶区的魏氏组织消失;显微硬度最大值均出现在粗晶区,手工电弧焊的热影响区宽度小于CO2气体保护焊。  相似文献   

18.
An experimental gas-metal arc (GMA) weldment of HSLA-100 steel fabricated with an ultralowcarbon (ULC) consumable of interest for United States Navy applications, designated “ARC100,” was studied to determine the relationships among the microstructure, the solute redistributions at various positions across the weldment, and the local properties (microhardness). These relationships were investigated by a variety of techniques, including microhardness mapping, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) (including compositional X-ray mapping), and parallel electron energy-loss spectroscopy (PEELS). The microconstituents observed in this weld include lath ferrite, degenerate ferrite, lath martensite, retained austenite, and oxide inclusions; no carbides or other solid-state precipitates are present within the weld metal. Microhardness mapping indicates an undermatched weld metal (lower hardness as compared to the base plate) in which the hardest regions are in the first and last top beads, the root passes, and between highly ferritic soft bands associated with the outer portion of each weld bead’s heat-affected zone (HAZ) (within the fusion zone). The majority of the gradient in the substitutional alloying elements (Ni, Cu, Mn, and Cr) occurs within a region of less than about 0.5 mm of the fusion boundary, but the composition still changes even well into the fusion zone. Appreciable segregation of Ni and Cu to solidification cell boundaries occurs, and there is appreciable enrichment of C, Ni, Cu, and Mn in thin films of interlath retained austenite. This ULC weld metal is softer than the base plate due to the preponderance of lath ferrite rather than lath martensite, even at the high cooling rates experienced in this low-heat-input weld. Alternatively, the strength of the weld metal is due to the presence of at least some untempered lath martensite and the fact that the majority of the ferrite is lath ferrite and not polygonal ferrite. The interlath retained austenite might enhance toughness, but might also serve as a source of hydrogen in solution, which could potentially contribute to hydrogen-assisted cracking.  相似文献   

19.
采用Nb、Ti、Cr、B微合金化成分,设计和开发了高品质自卸车厢体用0.20%~0.25%C耐磨钢NM450。该钢14 mm板900℃淬火200℃回火的组织为回火板条马氏体,并有少量弥散分布的第二相粒子,具有良好的综合性能。NM450钢抗拉强度1459 MPa,延伸率19%,冲击功104 J,表面硬度值450HBW。在弯曲角度为180°,弯头直径为168 mm条件下,弯曲试样合格。采用CHW-70C焊丝,焊接性能良好,焊接接头抗拉强度839MPa,焊缝冲击功113 J,焊缝硬度值282HV,在弯曲角度为90°,弯头直径为168 mm条件下,弯曲试样合格。  相似文献   

20.
利用金相显微镜、扫描电子显微镜及附带EDS系统和透射电子显微镜研究850 MPa级焊缝金属的微观组织,并通过分析焊缝金属凝固和相变过程,研究组织形成机制。发现原δ铁素体柱状晶晶界附近的锰和镍含量高于其心部含量。原δ铁素体柱状晶晶界附近组织由平行板条马氏体组成,板条宽度约为300 nm,原δ铁素体柱状晶心部组织由"交织状"板条马氏体组成,板条宽度约为400 nm。分析认为造成原δ铁素体柱状晶晶界附近和心部组织差异的重要原因是锰和镍的偏析,而焊缝金属良好的冲击韧性是因为存在30%"交织状"马氏体和一定量残余奥氏体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号