首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous Si-Ti-C-O fibre with 12 wt% oxygen content, which is lower than the usual 18 wt% found in the normal fibres, was synthesized by using polytitanocarbosilane which has fewer Si-Si bonds than the usual precursor polymer. The density, tensile strength, tensile modulus and thermal conductivity were found to be 2.37 g cm–3, 3.4±0.3 GPa, 190±10 GPa and 1.40 W m–1 K–1, respectively. Amongst these properties, the tensile modulus was improved by 20 GPa and the thermal conductivity had a higher value in comparison with that of the ordinary Si-Ti-C-O fibre with 18 wt% oxygen content. The Si-Ti-C-O fibre with a 12 wt% oxygen content has a better heat resistance above 1400 °C in an argon atmosphere and 1300 °C in air, than the usual fibre. About 60 and 40% of its tensile strength at room temperature were retained in air at respectively, 1500 and 1600 °C. This improved ceramic fibre is considered to be useful as a reinforcing material for advanced composites such as high-temperature ceramic matrix composites and metal matrix composites.  相似文献   

2.
Si-Ti-C-O fibre-bonded ceramic material was synthesized from pre-oxidized Si-Ti-C-O fibre with an oxide layer 400–600 nm thick, by hot-pressing at 2023 K under 50–70 MPa. The interstices in the Si-Ti-C-O fibre-bonded ceramic material were packed with an oxide material which existed on the surface of the pre-oxidized Si-Ti-C-O fibre, and the oxide material formed a small amount of the matrix phase (10 vol%). At the fibre-matrix interface, aligned turbostratic carbon, which was oriented around the fibre, was formed during hot-pressing. The existence of the interfacial carbon layer indicated the Si-Ti-C-O fibre-bonded ceramic material to have a fibrous fracture pattern with high fracture energy. The Si-Ti-C-O fibre-bonded ceramic material showed excellent durability even at 1773 K in air, because a protective oxide layer is formed on the surface at a high temperature (above 1273 K) in air. Moreover, the Si-Ti-C-O fibre-bonded ceramic material almost maintained its initial strength in the bending and tensile tests, even at 1773 K in air.  相似文献   

3.
Mechanical and thermophysical characteristics of Si-Ti-C-O fibre-bonded ceramic produced by hot-pressing the laminated material of oxidized satin-woven Si-Ti-C-O fibre have been investigated at room and cryogenic temperatures. The fibre element (diameter: 8 m, fibre volume fraction: 85 ± 1%) constructing the Si-Ti-C-O fibre-bonded ceramic showed a close-packed structure of the oxidized Si-Ti-C-O fibre mainly composed of fine SiC crystals, amorphous SiO2-based phase and turbostratic carbon. The Si-Ti-C-O fibre-bonded ceramic with lightweight (density: 2.45 × 103kg/m3) and low porosity (<1 vol%) showed a markedly higher fracture energy (notched, cross-plied specimen: approximately 10kJ/m2) and lower thermal conductivity (1/10 the value of stainless steel). The reason why the fibre- bonded ceramic showed such a low thermal conductivity in spite of very high thermal conductivity of a pure SiC and carbon could be attributed to the complicated microstructure of Si-Ti-C-O fibre-bonded ceramics.  相似文献   

4.
The changes in the mechanical properties of cement composites made from high-alumina cement and Cem-FIL AR-glass fibres kept in three different environments up to 10 years are described. While the flexural and impact properties of the composite remained largely unaffected with time in a relatively dry atmosphere, in wet conditions a reduction in strength takes place. In natural weather the 10 year modulus of rupture and impact strength values are 22.8 MIN m–2 and 6.7 KJ m–2, respectively, corresponding to the 28 day values of 41.2 MN m–2 and 22.8 KJ m–2. These values are significantly better than the corresponding results obtained with Portland cement composites made from Cem-FIL fibres. High-alumina cement composites reinforced by E-glass fibre lose a very large proportion of their flexural and impact strength under wet conditions. The strength reduction with time observed for glass fibre reinforced high-alumina cement composites can be related to two sources: (a) the reduction in the strength of the glass fibre due to chemical corrosion and (b) conversion of the matrix. The latter has greater influence on those composite properties that are matrix controlled such as the Young's modulus whereas any significant reduction in fibre tensile strength is reflected in a corresponding loss in composite tensile and bending strength. Matrix conversion may also influence the fibre-matrix bond.  相似文献   

5.
The failure mechanisms in waisted tensile specimens of pultruded 60% volume fraction glass fibre-epoxide were investigated at atmospheric and superposed hydrostatic pressures extending to 350 MN m–2. The maximum principal stress at fracture decreased from 1.7 GN m–2 at atmospheric pressure to 1.3 GN m–2 at 250 MN m–2 superposed pressure and remained approximately constant at higher pressures, as had been observed with carbon fibre reinforced plastic (CFRP) and a nickel-matrix carbon fibre composite. In the high-pressure region the failure surfaces were fairly flat, consistent with the fracture process being solely controlled by fibre strength. Pre-failure damage, in particular debonding, was initiated at 0.95 GN m–2 at atmospheric pressure and this stress rose to 1.2 GN m–2 at 300 MN m–2 superposed pressure, i.e. by about 9% per 100 MN m–2. Unlike the pressure dependence in CFRP, this contrasts with the pressure dependence of the resin tensile strength, about 25% per 100 MN m–2, but can be associated with that of the fibre bundle/resin debonding stress, about 12% per 100 MN m–2 superposed pressure. Consistent with this interpretation, glass fibres of the failure surfaces were resin-free, again in contrast to CFRP.  相似文献   

6.
Preparation and properties of cast aluminium-ceramic particle composites   总被引:4,自引:0,他引:4  
A casting technique for preparing aluminium-alumina, aluminium-illite and aluminium-silicon carbide particle composites has been developed. The method essentially consists of stirring uncoated but suitably heat-treated ceramic particles of sizes varying from 10 to 200 m in molten aluminium alloys (above their liquidus temperature) using the vortex method of dispersion of particles, followed by casting of the composite melts. Recoveries and microscopic distribution of variously pretreated ceramic particles in the castings have been reported. Mechanical properties and wear of these composites have been investigated. Ultimate tensile strength (UTS) and hardness of aluminium increased from 75.50 MN m–2 and 27 Brinell hardness number (BHN) to 93.15 MN m–2 and 37 BHN respectively due to additions of 3 wt % alumina particles of 100 m size. As a contrast, the tensile strength of aluminium-11.8 wt % Si alloy decreased from 156.89 MN m–2 to 122.57 MN m–2 due to the addition of 3 wt % alumina particles of the same size. Adhesive wear rates of aluminium, aluminium-11.8 wt % Si and aluminium-16 wt % Si alloys decreased from 3.62×10–8, 1.75×10–8 and 1.59×10–8 cm3 cm–1 to 2.0×10–8, 0.87×10–8 and 0.70×10–8 cm3 cm–1, respectively, due to the additions of 3 wt % alumina particles.Formerly with the Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India.  相似文献   

7.
Development of Si-B-O-N fibres from polyborosilazane   总被引:2,自引:0,他引:2  
A polyborosilazane, which is a precursor of ceramic fibre, was synthesized from perhydropolysilazane and trimethyl borate. The polyborosilazane was dry-spun and then pyrolysed to produce amorphous Si-B-O-N fibre. The Si-B-O-N fibre retained its high tensile strength to higher temperatures (about 1600 °C). The fibre has a density of 2.4 g cm–3, tensile strength of 2.5 GPa and an elastic modulus of 180 GPa.  相似文献   

8.
A new polyimide has been synthesized from 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and 2,2-dimethyl-4,4-diaminobiphenyl (DMB). A high-strength, high-modulus, high-temperature fibre has been developed from this polyimide via a dry-jet wet spinning method. The tensile strength of BPDA-DMB fibres is 3.3 GPa and the tensile modulus is around 130 GPa. The compressive strength of the fibres has been investigated through a tensile recoil test (TRT), while the fibre morphology after compression has been studied via polarized light microscopy (PLM) and scanning electron microscopy (SEM). From the TRT measurements, we have observed that the compressive strength of this fibre is 665 (±5) MPa, which is higher than those of other aromatic polymer fibres. The effect of fibre diameter on the compressive strength of BPDA-DMB fibres is not substantial. The critical compressive strain for this fibre at which the kink bands start appearing under the observation of PLM is at 0.51–0.54%. Subglass relaxation processes have been observed and the measure of an apparent relaxation strength may serve as one of the factors which significantly affect the compressive strength of the fibres. Tensile tests of pre-compressed fibres reveal a continuous loss in tensile strength (up to 30%) with increasing the compressive strain (up to 2.6%). PLM and SEM observations show that during the compression BPDA-DMB fibres form regularly-spaced kink bands at ±60 ° (±2 °) with respect to the fibre axis. The kink band density initially increases with the compressive strain, and reaches a maximum at around 1.1%. Further increase of the compressive strain decreases this density due to the merge of the neighbouring bands. The size of kink bands also correspondingly increases within this compressive strain region. The morphological observation via SEM implies the existence of a skin-core structure and microfibrillar texture which are common features in polymer fibres.  相似文献   

9.
The present work investigates the tensile creep behavior (deformation and rupture) at 1100–1300°C in air of a 3-D woven Si-Ti-C-O (Tyranno) fiber/SiC-based matrix composite with and without glass sealant. The composite contained Si-Ti-C-O fibers with an additional surface modification in order to improve interface properties. Although a significant decrease in tensile strength was observed in the unsealed composite beyond 1000°C in air (and attributed to oxidation of the fiber/matrix interface), the composite with glass sealant possessed excellent mechanical properties for short-term (<1 hr.) exposure in air. In this study, tensile creep testing was conducted at 1100–1300°C in air and the effect of glass sealant on medium- and long-term strength was investigated. In addition, chemical stability of the glass sealant was evaluated by X-ray diffraction analysis (XRD) and energy dispersive X-ray spectrometer (EDS). The creep rupture behavior of the composite with glass sealant under long-term exposure is suggested to depend on several factors including decomposition, evaporation, and crystallization of the glass sealant material, in addition to the applied stress.  相似文献   

10.
A copolymer of polycarbosilane and perhydropolysilazane was obtained by reacting polycarbosilane with titanium n-butoxide and perhydropolysilazane. Titanium n-butoxide and perhydropolysilazane were essential for the polymer to show a thermosetting property. The thermosetting copolymers were converted into silicon carbide-based ceramics by pyrolysis in a stream of nitrogen to 1000 °C with about 80 wt% ceramic yield. The main phase of the pyrolysis product at 1500 °C in nitrogen was small crystallite -SiC. Elemental carbon, based on rule-of-mixtures composition, in the final ceramics could be reduced by varying the ratio of polycarbosilane/perhydropolysilazane. The copolymer was dry spun and pyrolysed to produce ceramic fibre. Pyrolysis in nitrogen to 1500 °C yielded a silicon carbide-based fibre with low oxygen and low elemental carbon content. A tensile strength of 1.8 GPa and an elastic modulus of 220 GPa were obtained for the fibre which ranged from 10–12 m in diameter. Crystallization to -Si3N4, -SiC, and -Si3N4 proceeded on annealing in nitrogen at 1700 °C for 1 h.  相似文献   

11.
Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment   总被引:3,自引:0,他引:3  
Two types of Si-Ti-C-O fibres were heat treated in a preheated graphite furnace at temperatures between 1273 and 1973 K, and the change in the electrical resistivity was measured after removing the fibres from the furnace. The resistivity of the fibres decreased monotonically with increasing heat-treatment temperature, but showed a significant increase of the order of 101–102 in the temperature range of gas evolution from the fibres. The resistivity of the fibre which has an amorphous character began to increase at a lower temperature than that of the fibre with a crystalline character. This increase in resistivity did not occur during heat treatment in a pure oxygen atmosphere, because the oxide layer formed on the fibre surface suppressed gas evolution from the fibres. The X-ray diffraction patterns of heat-treated fibres in nitrogen or oxygen atmospheres revealed that -SiC crystals began to precipitate from the amorphous state as the heat-treatment temperature increased. The -SiC crystal growth, however, did not always correspond with the decrease in the fibre resistivity.  相似文献   

12.
《Composites》1987,18(2):107-120
Following the first synthesis of silicon carbide fibres from polycarbosilane, the formation of ceramic fibres by the pyrolysis of organometallic polymers has recently begun to attract considerable attention. SixNyCz, Si-Ti-C-O and Si-N-O fibres have been synthesized by the pyrolysis pf polysilazane, polytitanocarbosilane and the nitridation of polycarbosilane, respectively. These ceramic fibres are promising as the reinforcement in composites. Here, a review is given of organometallic polymers as precursors for ceramic fibres, conversion processes from polymer to ceramic and the mechanical properties of ceramic fibres.  相似文献   

13.
Tensile and compressive properties of fibre-bonded ceramic (Tyrannohex) are reported along with the relationship between fibre orientation and flexural strength. In this study, Satin-Tyrannohex was produced by hot-pressing an oxidized satin-woven Tyranno fibre. The Satin-Tyrannohex showed the most well-balanced mechanical properties in all directions from the fibre axis at room temperature compared with crossplied- or 0 °/±45 °/90 °-Tyrannohex. The Satin-Tyrannohex maintained excellent strength up to 1400°C, which is comparable to or greater than the strength at room temperature. Decreases in tensile and compressive strengths at 1500°C could be due to an increase in the critical length of the fracture fibre and a decrease in the capability to support the fibre, respectively, because of the slight softening of the matrix.  相似文献   

14.
The sulphonation of commercially available PEEK in powder form (Gatone, Gharda Chemicals Limited, India) was carried out using conc. H2SO4 under different reaction conditions. The duration of reaction was varied from 3–5 h, polymer concentration 4–10% (w/v) and temperature 35–50C. Structural characterisation of sulphonated polymers was done by elemental analysis, FT-IR and 1H-NMR spectroscopy. The degree of sulphonation as calculated from 1H-NMR and elemental analysis (S-content) was found to be in the range of 50–80%. Multistep mass loss was observed in thermogravimetric traces (recorded in N2 atmosphere). The first step (50–225 ± 25C) was due to loss of moisture (1–10%) and second step (250–425 ± 25C) has been attributed to volatilization of SO3 from the sulphonic group. The backbone degradation takes place above 450C. The mechanical properties and proton conductivities of various sulphonated samples was also evaluated.  相似文献   

15.
Silicon carbide fibre reinforced glass-ceramic matrix composites have been investigated as a structural material for use in oxidizing environments to temperatures of 1000° C or greater. In particular, the composite system consisting of SiC yarn reinforced lithium aluminosilicate (LAS) glass-ceramic, containing ZrO2 as the nucleation catalyst, has been found to be reproducibly fabricated into composites that exhibit exceptional mechanical and thermal properties to temperatures of approximately 1000° C. Bend strengths of over 700 MPa and fracture toughness values of greater than 17 MN m–3/2 from room temperature to 1000° C have been achieved for unidirectionally reinforced composites of 50 vol% SiC fibre loading. High temperature creep rates of 10–5 h–1 at a temperature of 1000° C and stress of 350 MPa have been measured. The exceptional toughness of this ceramic composite material is evident in its impact strength, which, as measured by the notched Charpy method, has been found to be over 50 times greater than hot-pressed Si3N4.  相似文献   

16.
The organic polyamide fibre, Kevlar, is promising as an efficient reinforcement for cementitious matrices. For cement boards, in which chopped fibres are distributed randomly in two dimensions, typical mechanical properties obtained with 1.9 vol% fibre addition are as follows: ultimate tensile strength (UTS) 16 MN m–2; MOR 44 MIN m–2; impact strength 17 kJ m–2. The composite material can be produced by autoclaving if desired and at ambient temperatures they are expected to be durable in most environments. The relatively low decomposition point of Kevlar (as opposed to glass fibres or steel) is a disadvantage for its use in building components which may come into contact with high temperatures, as in a fire. It should be noted that a solvent which is used in the manufacture of the fibre and remains in the fibre in minute quantities has been found to produce cancer in rats. There is no evidence of it causing cancer in humans but the significance of this in terms of a possible health risk, if any, will need to be assessed by the appropriate medical authorities in relation to any applications.  相似文献   

17.
The stress-strain curves for pineapple leaf fibre have been analysed. Ultimate tensile strength (UTS), initial modulus (YM), average modulus (AM) and elongation of fibres have been calculated as functions of fibre diameter test length and test speed. UTS, YM, and elongation lie in the range of 362 to 748 MN m–2, 25 to 36 GN m–2, and 2.0 to 2.8%, respectively for fibres of diameters ranging from 45 to 205m. UTS Was found to decrease with increasing test lengths in the range 15 to 65 mm. Various mechanical parameters show marginal changes with change in speed of testing in the range of 1 to 50 mm min–1. The above results are explained on the basis of structural variables of the fibre. Scanning electron microscope studies of the fibres reveal that the failure of the fibres is mainly due to large defect content of the fibre bo1h along the fibre and through the cross-section, The crack is always initiated by the defective cells and further aggravated by the weak bonding material between the cells.  相似文献   

18.
The examination of microstructure of tensile specimens of pultruded 60% V f carbon fibre-reinforced epoxide of up to 6 mm unreduced diameter shows that transverse cracking precedes the tensile failure of groups of fibres. In material whose strength is 2 GN m–2, the process can commence in waisted specimens at stresses as low as 1 GN m–2; in those of unreduced section it was not detected below 1.5 GN m–2. This failure initiation stage can be associated with the decrease in the slope of the load-extension curve. With increasing load the inter-tow cracks were observed to grow and some surface fibre bundles detached. It is suggested that misaligned fibres in these surface bundles were straightened out and contributed to the load-carrying capacity of the rod. Only following detachment of numerous bundles (for the specimens with unreduced section) or growth of interlaminar cracks into the specimen shoulders (for those with a reduced gauge diameter) did tensile failure of fibre bundles lead to catastrophic fracture. It is to this last propagation stage that statistical models of failure of bundles at different cross-sections should refer.  相似文献   

19.
The failure process in waisted tensile specimens of pultruded 60% volume fraction carbon fibre-epoxide was investigated at atmospheric and superposed hydrostatic pressures up to 300 MN m–2. The maximum principal stress at fracture decreased from ~ 2.0 GN m–2 at atmospheric pressure to ~ 1.5 GN m–2 by 200 MN m–2 superposed pressure and then remained approximately constant. These latter failures were fairly flat and no damage preceding the catastrophic fracture was detected, which indicates that composite strength is solely controlled by fibre strength. Fracture of fibres at lower pressures appeared to commence also in the range 1.5 to 1.6 GN m–2, but, as it did not result in catastrophic failure, account has to be taken of the resin and the fibre bundles. Debonding was initiated at ~ 1.2 GN m–2 at atmospheric pressure and this stress increased to ~ 1.5 GN m–2 when 150 MN m–2 superposed pressure was applied; the pressure dependence was related to that of the resin tensile strength. This process is described as the first stage, straightening and debond initiation of curved surface bundles, on our model of tensile failure. The second stage, delamination, i.e. the growth of transverse cracks leading to the detachment of these bundles, was impeded by the transverse pressure, being suppressed beyond 150 MN m–2. Only below this pressure was load redistribution between bundles possible, but, as the pressure was increased from atmospheric, it become more difficult, resulting in a decrease in the composite tensile strength and reduced fibre pull-out.  相似文献   

20.
The high-temperature mechanical behaviour and microstructural evolution of experimental SiC fibres (Hi-Nicalon) with a low oxygen content (<0.5 wt%) have been examined up to 1600 °C. Comparisons have been made with a commercial Si-C-O fibre (Nicalon Ceramic Grade). Their initial microstructure consists of -SiC crystallites averaging 5–10 nm in diameter, with important amounts of graphitic carbon into wrinkled sheet structures of very small sizes between the SiC grains. The fall in strength above 800 °C in air is related to fibre surface degradation involving free carbon. Crystallization of SiC and carbon further develops in both fibres subject to either creep or heat treatment at 1300 °C and above for long periods. The fibres are characterized by steady state creep and greater creep resistance (one order of magnitude) compared to the commercial Nicalon fibre. The experimental fibre has been found to creep above 1280 °C under low applied stresses (0.15 GPa) in air. Significant deformations (up to 14%) have been observed, both in air and argon above 1400 °C. The stress exponents and the apparent activation energies for creep have been found to fall in the range 2–3, both in air and argon, and in the range 200–300 kJ mol–1 in argon and 340–420 kJ mol–1 in air. The dewrinkling of carbon layer packets into a position more nearly aligned with the tensile axis, their sliding, and the collapse of pores have been proposed as the mechanisms which control the fibre creep behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号