首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reactivations of persistent viral infections pose a significant medical problem in immunocompromised cancer, transplant, and AIDS patients, yet little is known about how persistent viral infections are immunologically controlled. Here we describe a mouse model for investigating the role of the immune response in controlling a persistent retroviral infection. We demonstrate that, following recovery from acute Friend virus infection, a small number of B cells evade immunological destruction and harbor persistent virus. In vivo depletions of T-cell subsets in persistently infected mice revealed a critical role for CD4(+) T cells in controlling virus replication, spread to the erythroid lineage, and induction of erythroleukemia. The CD4(+) T-cell effect was independent of CD8(+) T cells and in some cases was also independent of virus-neutralizing antibody responses. Thus, the CD4(+) T cells may have had a direct antiviral effect. These results may have relevance for human immunodeficiency virus (HIV) infections where loss of CD4(+) T cells is associated with an increase in HIV replication, reactivation of persistent viruses, and a high incidence of virus-associated cancers.  相似文献   

3.
Down-regulation of the initial burst of viremia during primary human immunodeficiency virus (HIV) infection is thought to be mediated predominantly by HIV-specific CD8+ cytotoxic T lymphocytes (CTL). This response is associated with major perturbations in the T cell receptor (TCR) repertoire. To investigate the failure of the cellular immune response to adequately control viral spread and replication and to prevent establishment of HIV infection, changes in the TCR repertoire and in the distribution of virus-specific CTL between blood and lymph node were analyzed in three patients with primary infection. By the combined use of clonotype-specific polymerase chain reaction and analysis of the frequency of in vivo activated HIV-specific CTL, it was shown that HIV-specific CTL clones preferentially accumulated in blood as opposed to lymph node. Accumulation of HIV-specific CTL in blood occurred prior to effective down-regulation of virus replication in both blood and lymph node. These findings should provide new insights into how HIV, and possibly other viruses, elude the immune response of the host during primary infection.  相似文献   

4.
Because human immunodeficiency virus type 1 (HIV-1) infection is characterized by a large number of viral replication cycles and rapid cell turnover in vivo, successful gene therapy requires an approach effective under these conditions. The antitat gene has been proposed for gene therapy because it effectively blocks Tat function and the replication of HIV-1. However, neither antitat nor any other antiviral gene has been shown to inhibit HIV in the presence of high viral load and inflammatory cytokines, a condition closer to the in vivo situation. We show that cells transduced with antitat retrovirus vector are resistant to high multiplicity of HIV infection. In the presence of inflammatory cytokines, including interleukin-1 and tumor necrosis factor, both known to activate viral gene expression independently of Tat, antitat suppressed virus replication. HIV-1 inhibition was observed when cell were treated with a mixture of inflammatory cytokines able to induce acquired immunodeficiency syndrome (AIDS) Kaposi's sarcoma cell growth. These molecules have been shown to be increased in HIV-1-infected individuals, and it is suggested they play a role in the pathogenesis of AIDS. Our results suggest that antitat is effective under conditions present in vivo and therefore a primary candidate for HIV-1 gene therapy.  相似文献   

5.
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.  相似文献   

6.
7.
Human T lymphotropic virus type I (HTLV-I) can increase human immunodeficiency virus (HIV) replication in vitro, and several studies suggest that HTLV-I accelerates the progression of HIV infection. To determine whether HTLV-I enhances HIV replication in vivo, a case-control study was done of serum HIV viral load, using polymerase chain reaction, in 23 subjects with HTLV-I/HIV coinfection and 92 control subjects with HIV single infection. The geometric mean serum RNA level was 11,482 copies/mL in the coinfected group and 13,804 in the single-infection group (P = .57), a result that did not change after adjustment for zidovudine use and CD4 cell count. Among subjects with advanced HIV infection, there was a trend toward higher viral load among singly infected subjects. HTLV-I did not appear to increase HIV plasma RNA levels in subjects with coinfection. These results do not provide a biologic basis for the hypothesis that HTLV-I accelerates the course of HIV infection.  相似文献   

8.
It is not known whether impaired hematopoiesis noted during human immunodeficiency virus (HIV) infection results from infection of stem/progenitor cells or of cells of the bone marrow microenvironment. Normal adherent primary stromal layers were exposed to HIV to determine which of this mixture of endothelial cells, fibroblasts, and macrophages are susceptible to the virus. Viral p24 in supernatants was noted with monocytotropic HIV-1Ada, HIV-1Ba-L, and HIV-1JR-FL but not with lymphotropic HIV-1LAI nor HIV-1MN strain, and only stromal macrophages expressed the viral antigens. Coculture of the layers with PHA-activated normal lymphocytes failed to rescue lymphotropic virus. No p24 was produced when macrophage-depleted stromal cells were exposed to either HIV-1Ba-L or HIV-1LAI; proviral DNA was then amplified by PCR in cells exposed to either virus, though coculture with lymphocytes rescued only HIV-1Ba-L. Altogether, these data indicate that macrophages are the major targets of HIV in cultured stromal layers. As virus replication in macrophages did not affect the profile of major cytokines involved in regulating hematopoiesis, HIV infection could alter hematopoiesis by other as yet unspecified mechanisms.  相似文献   

9.
10.
An animal model was used to assess whether resistance to superinfection by human immunodeficiency virus (HIV) can exist in vivo. Asymptomatic baboons (Papio cynocephalus), previously infected with HIV-2, were first challenged with homologous virus (HIV-2UC2 or HIV-2UC14) and later with heterologous virus (HIV-2UC12). After both virus inoculations, either resistance to viral infection or a transient viremia was observed. The original virus was recovered in 3 baboons, suggesting that reactivation of a latent infection occurred on heterologous challenge and that HIV-2 superinfection is blocked by processes established during prior infection. Antibody titers measured by ELISA and virus neutralization remained at low levels. However, suppression of HIV-1 replication was observed with CD8 T cells and filtered cell culture supernatants. The soluble factor involved was not a beta-chemokine. This resistance to HIV superinfection appears to be mediated at least in part by CD8 T cells that suppress virus production.  相似文献   

11.
Nitric oxide (NO) has been implicated in certain immunopathogenetic mechanisms during the course of infection with human immunodeficiency virus (HIV). We have evaluated the levels of NO release and lymphocyte apoptosis in peripheral blood mononuclear cell (PBMC) cultures from HIV-1 infected subjects and healthy controls. We have also examined these 2 parameters in parallel cultures maintained under conditions where either NO synthesis was inhibited or high level of NO was present. Nitrite contents in culture supernatants were measured as the stable end products of the released NO. Levels of spontaneous apoptosis and activation-induced cell death (AICD) by anti-CD3 or by phytohemagglutinin were evaluated using flow cytometry. Additional experiments were also aimed at addressing a potential link between NO synthesis and HIV-1 replication in human monocyte-derived macrophages (MDMs). Acutely infected MDMs with HIV-1Bal were maintained in culture, without any additional activation signal, for a period of 14 days. Nitrites in the supernatants and mRNA accumulation of the inducible NO synthase (iNOS) in infected cells were assessed over the whole culture period. In addition, the effect of blocking NO synthesis during and after infection of MDMs, using an inhibitor of NO, was evaluated on the level of viral replication as measured by the presence of P24 antigen in the supernatants. Similarly, the effect on HIV replication of high NO levels in MDM cultures, supplied by a donor of NO during the 24 h period of infection, was also studied. We conclude that no elevation in NO release could be detected in PBMC cultures from HIV-1 infected subjects and that modulation of NO content may slightly regulate the level of spontaneous lymphocyte apoptosis but not that of AICD. Infection of MDMs with HIV-1 does not seem to induce detectable NO release or iNOS mRNA accumulation. Similarly, neither inhibition of NO synthesis nor the presence of high NO levels during the infection period could modify the outcome of virus replication in macrophages.  相似文献   

12.
13.
14.
Two primary human immunodeficiency virus (HIV)-1 biologic clones have been studied extensively in a system using CD4 T cell-enriched peripheral blood lymphocytes and anti-CD4 antibody to measure viral replication kinetics and single-cell cytopathicity. Biologic clones from a person with AIDS replicated to high levels and were cytopathic in the absence of syncytium formation. Unexpectedly, biologic clones from an adult long-term nonprogressor were noncytopathic in spite of similar levels of viral replication. A correlation has recently been demonstrated between reduced mitochondrial viability and cell death in HIV-1-infected cultures. Peripheral blood-derived CD4 T cells infected with the cytopathic clone showed a progressive reduction in mitochondrial viability, while those infected with the noncytopathic clone demonstrated functionally viable mitochondria. These studies demonstrate that primary HIV-1-induced cytopathicity is separable from syncytium formation and replication rate.  相似文献   

15.
Viruses, including the Human Immunodeficiency Virus (HIV), have evolved multiple strategies to overcome host immune defenses, allowing them to persist in the host. Molecular and cellular approaches were simultaneously used to provide sensitive and unbiased delineation of the diversity and dynamics of the immune response, and to study the relative compartimentalization of HIV-specific CTL clones in patients undergoing primary HIV infection. This approach revealed that some HIV-specific CTL clones can be deleted in presence of high levels of antigen, a phenomenon analogous to high-dose tolerance or clonal exhaustion described in murine models of persistent viral infections. Also, HIV-specific CTL clones were found to accumulate preferentially in peripheral blood as compared to lymph nodes, even though the large majority of viral replication during primary HIV infection takes place within lymph nodes. These two mechanisms may decrease the effectiveness of the host cell-mediated immune responses, and favor the establishment of virus persistence during primary HIV infection.  相似文献   

16.
Plasma levels of proinflammatory cytokines, cytokine inhibitors, and the beta chemokines RANTES, macrophage inhibitory protein (MIP)-1alpha, and monocyte chemoattractant protein (MCP)-1 were studied in relationship with virus load in 40 patients exhibiting plasma levels of HIV RNA ranging between undetectable and levels >10(6) copies/mL. Mean plasma levels of MCP-1 were increased in patients with high virus load compared with HIV-seropositive subjects with undetectable plasma viral RNA and healthy controls. MCP-1 levels were directly correlated with plasma levels of HIV RNA. No correlation was observed between virus load and plasma concentrations of MIP-1alpha and RANTES. The results suggest that low rates of viral replication in vivo are not dependent on increased production of the suppressive chemokines RANTES and MIP-1alpha. Since MCP-1 upregulates viral replication in vitro, the results may suggest a role for MCP-1 in triggering viral replication in HIV disease.  相似文献   

17.
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.  相似文献   

18.
Simian immunodeficiency virus (SIV) infection in macaque species is typically associated with the development of a progressive immunodeficiency disease, similar to human AIDS, resulting in death of animals in months to years after infection. In contrast, a variant virus, termed SIVsmmPBj, induces an acute disease in macaques, resulting in death in 5 to 14 days after infection. Previously, we have shown that several viral determinants contribute to the pathogenesis of this disease. The present study was undertaken to evaluate the role of Nef in the pathogenesis of SIVsmmPBj-induced acute disease. A molecular clone of SIVsmmPBj was generated that contains a deletion in the nef coding region (PBj6.6 delta nef). Virus derived from this molecular clone was tested with the parental virus, PBj6.6, in replication studies in pigtail macaque and rhesus macaque peripheral blood mononuclear cells (PBMCs). In general, PBj6.6 delta nef displayed markedly reduced replication abilities when compared with PBj6.6; the only exception being in stimulated pigtail macaque PBMCs, where replication kinetics were nearly identical. In addition, PBj6.6 delta nef was unable to induce the proliferation of peripheral blood mononuclear cells (PBMCs) in vitro, a unique characteristic of acutely pathogenic SIVsmmPBj. Inoculation of this virus into pigtail macaques resulted in infection, but did not result in any detectable acute disease. These studies suggest that Nef is an important viral determinant in the pathogenesis of SIVsmmPBj-induced disease, and further suggest that Nef plays a significant role in viral replication in vivo.  相似文献   

19.
20.
We comparatively analyzed the replication kinetics of wild-type (wt) and nef mutant human immunodeficiency virus type 1 (HIV-1) in several CD4-positive cell lines, in order to clarify the molecular function of Nef protein. The delayed growth of nef mutant virus was observed at the initial stage of replication in all cell lines examined. This phenomenon was greatly amplified in the absence of vpu gene. In order to determine the infection stage in viral replication cycle which is specifically affected on virus replication rate in the presence of the Nef protein, we first examined the difference between wt and nef mutant viruses in the virus production rate from transfected cells, and found that the both viruses were produced with equal efficiency. This result showed that Nef protein could be dispensable for virion production. Therefore, early infection stages were focused by single-round infection assay, and the nef mutant virus was found to be much less infectious than wt virus. This indicated that the effect of Nef protein was exhibited in the early phase of a virus replication cycle, during viral adsorption to integration. By entry assay using wt and nef mutant virions, it was revealed that the Nef protein was required for efficient viral entry. These data suggest that the Nef protein might play a role in efficient incorporation of the Env protein into the virions, leading to enhanced viral infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号