首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The present study describes for the first time the characterization of the adenosine A2A receptor in human lymphocyte membranes with the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4 triazolo [1,5-c] pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of reference adenosine receptor agonists and antagonists were determined in binding and adenylyl cyclase studies. 2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 0.85 nM and 35 fmol mg-1 protein, respectively. A series of adenosine receptor ligands were found to compete for the binding of 0.8 nM [3H]-SCH 58261 to human lymphocyte membranes with a rank order of potency consistent with that typically found for interactions with the A2A-adenosine receptor. In the adenylyl cyclase assay the same compounds exhibited a rank order of potency similar to that observed in binding experiments. 3. Thermodynamic data indicate that [3H]-SCH 58261 binding to human lymphocytes is entropy and enthalpy-driven, a finding in agreement with the thermodynamic behaviour of antagonists for rat striatal A2A-adenosine receptors. 4. It is concluded that in human lymphocyte membranes [3H]-SCH 58261 directly labels binding sites showing the characteristic properties of the adenosine A2A-receptor. The presence of A2A-receptors in peripheral tissue such as human lymphocytes strongly suggests an important role for adenosine in modulating immune and inflammatory responses.  相似文献   

2.
1. The present study describes the direct labelling of A2A adenosine receptors in human neutrophil membranes with the potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4 triazolo[l,5-c]pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of a number of adenosine receptor agonists and antagonists were determined in binding, adenylyl cyclase and superoxide anion production assays. 2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 1.34 nM and 75 fmol mg(-1) protein, respectively. Adenosine receptor ligands competed for the binding of 1 nM [3H]-SCH 58261 to human neutrophil membranes, with a rank order of potency consistent with that typically found for interactions with the A2A adenosine receptors. In the adenylyl cyclase and in the superoxide anion production assays the same compounds exhibited a rank order of potency identical to that observed in binding experiments. 3. Thermodynamic data indicated that [3H]-SCH 58261 binding to human neutrophils is entropy and enthalpy-driven. This finding is in agreement with the thermodynamic behaviour of antagonists binding to rat striatal A2A adenosine receptors. 4. It was concluded that in human neutrophil membranes, [3H]-SCH 58261 directly labels binding sites with pharmacological properties similar to those of A2A adenosine receptors of other tissues. The receptors labelled by [3H]-SCH 58261 mediated the effects of adenosine and adenosine receptor agonists to stimulate cyclic AMP accumulation and inhibition of superoxide anion production in human neutrophils.  相似文献   

3.
1. The present study describes the binding to rat striatal A2A adenosine receptors of the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazol o [1,5-c] pyrimidine, [3H]-SCH 58261. 2. [3H]-SCH 58261 specific binding to rat striatal membranes ( > 90%) was saturable, reversible and dependent upon protein concentration. Saturation experiments revealed that [3H]-SCH 58261 labelled a single class of recognition sites with high affinity (Kd = 0.70 nM) and limited capacity (apparent Bmax = 971 fmol mg-1 of protein). The presence of 100 microM GTP in the incubation mixture did not modify [3H]-SCH 58261 binding parameters. 3. Competition experiments showed that [3H]-SCH 58261 binding is consistent with the labelling of A2A striatal receptors. Adenosine receptor agonists competed with the binding of 0.2 nM [3H]-SCH 58261 with the following order of potency: 2-hexynyl-5'-N-ethyl carboxamidoadenosine (2HE-NECA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-[4-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne (CGS 21680) > 2-phenylaminoadenosine (CV 1808) > R-N6-phenylisopropyladenosine (R-PIA) > N6-cyclohexyladenosine (CHA) = 2-chloro-N6-cyclopentyladenosine (CCPA) > S-N6-phenylisopropyladenosine (S-PIA). 4. Adenosine antagonists inhibited [3H]-SCH 58261 binding with the following order: 5-amino-9-chloro-2-(2-furyl)-[1,2,4]-triazolo[1,5-c] quinazoline (CGS 15943) > 5-amino-8-(4-fluorobenzyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine (8FB-PTP) = SCH 58261 > xanthine amine congener (XAC) = (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropylxanthine (KF 17837S) > 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) > or = 8-phenyltheophylline (8-PT). 5. The Ki values for adenosine antagonists were similar to those labelled with the A2A agonist [3H]-CGS 21680. Affinities of agonists were generally lower. The A1-selective agonist, R-PIA, was found to be about 9 fold more potent than its stereoisomer, S-PIA, thus showing the stereoselectivity of [3H]-SCH 58261 binding. Except for 8-PT, the adenosine agonists and antagonists examined inhibited [3H]-SCH 58261 binding with Hill coefficients not significantly different from unity. 6. The present results indicate that [3H]-SCH 58261 is the first non-xanthine adenosine antagonist radioligand which directly labels A2A striatal receptors. High receptor affinity, good selectivity and very low non-specific binding make [3H]-SCH 58261 an excellent probe for studying the A2A adenosine receptor subtype in mammalian brain.  相似文献   

4.
A series of 8-substituted derivatives of 3,7-dimethyl-1-propargylxanthine (DMPX) was synthesized and investigated as A2A adenosine receptor antagonists. Different synthetic strategies for the preparation of DMPX derivatives and analogues were explored. A recently developed synthetic procedure starting from 3-propargyl-5,6-diaminouracil proved to be the method of choice for the preparation of this type of xanthine derivatives. The novel compounds were investigated in radioligand binding studies at the high-affinity adenosine receptor subtypes A1 and A2A and compared with standard A2A adenosine receptor antagonists. Structure-activity relationships were analyzed in detail. 8-Styryl-substituted DMPX derivatives were identified that exhibit high affinity and selectivity for A2A adenosine receptors, including 8-(m-chlorostyryl)-DMPX (CS-DMPX, Ki A2A = 13 nM, 100-fold selective), 8-(m-bromostyryl)-DMPX (BS-DMPX, Ki A2A = 8 nM, 146-fold selective), and 8-(3,4-dimethoxystyryl)-DMPX (Ki A2A = 15 nM, 167-fold selective). These and other novel compounds are superior to the standard A2A adenosine receptor antagonists KF17837 (4) and CSC (5) with respect to A2A affinity and/or selectivity.  相似文献   

5.
The effects of adenosine receptor ligands and three novel pyrazolopyridine derivatives on guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding to rat cerebral cortical membranes were examined. [35S]GTPgammaS binding was stimulated in a concentration dependent manner by several adenosine receptor agonists. The adenosine A2a receptor selective agonist, 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680), was ineffective confirming specificity for adenosine A1 receptor activation. 2-Chloro-N6-cyclopentyladenosine (CCPA; 10(-7) M)-stimulated [35S]GTPgammaS binding was inhibited by xanthine and pyrazolopyridine based adenosine receptor antagonists. The concentration-response curve for CCPA-stimulated [35S]GTPgammaS binding was shifted to the right with increasing concentrations of antagonist without significant changes in maximal response. Schild analyses determined pK(B) values of 8.97, 8.88, 8.21, 8.16, 7.79 and 7.65 for 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (R)-1-[(E)-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl) acryloyl]-2-piperidine ethanol (FK453), 6-oxo-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl)-1(6H)-pyridazinebutyric+ ++ acid (FK838), 9-chloro-2-(2-furyl)[1,2,4]triazolo-[1,5c]quinazolin-5-amine (CGS 15943), 8-cyclopentyl-1,3-methylxanthine (CPT) and (R)-1-[(E)-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl) acryloyl]-piperidin-2-yl acetic acid (FK352), respectively. Schild slopes were close to unity, confirming that these novel pyrazolopyridine derivatives act as competitive antagonists at rat brain adenosine A1 receptors.  相似文献   

6.
The A3 adenosine receptor is one of the four adenosine receptors which have thus far been identified. Cloning of the A3 receptor from animal species such as rat, sheep and human has shown that there are interspecies differences in its peripheral distribution, and binding affinity for various adenosine receptor ligands. The adenosine derivative, 4-aminobenzyl-5'-N-methylcarboxamidoadenosine (AB-MECA), is a potent A3 receptor agonist which is used as a reference drug. In this report we have characterized the binding of selected adenosine receptor agonists and antagonists to HEK 293 cells transfected with the human A3 adenosine receptor using [125I]AB-MECA as radioligand. HE-NECA and NECA were the most potent compounds showing Ki values in the low nanomolar range, while the recently discovered non-xanthine A2A receptor antagonists ZM 241385, SCH 58261 and SCH 63390 showed affinity values in the micromolar range. These data further indicate the need to examine the affinity of new adenosine receptor ligands directly in human A3 receptors.  相似文献   

7.
In the present study an investigation of the structure-activity relationships in 9-ethylpurine derivatives, aimed at preparing A1, A2A, A2B, and A3 selective adenosine receptor antagonists, was undertaken. Our synthetic approach was to introduce various substituents (amino, alkoxy and alkynyl groups) into the 2-, 6-, or 8-positions of the purine ring. The starting compounds for each series of derivatives were respectively: 2-iodo-9-ethyladenine (9), obtained from 2-amino-6-chloropurine (5); 9-ethyl-6-iodo-9H-purine (11), 8-bromo-9-ethyl-adenine (3) and 8-bromo-9-ethyl-6-iodo-9H-purine (13), obtained from 9-ethyl-adenine (2). The synthesized compounds were tested in in vitro radioligand binding assays at A1, A2A, and A3 human adenosine receptor subtypes. Due to the lack of a suitable radioligand the affinity of the 9-ethyladenine derivatives at A2B adenosine receptors was determined in adenylyl cyclase experiments. In general, the series of 9-ethylpurine derivatives exhibited a similar pharmacological profile at A1 and A2A receptors whereas some differences were found for the A3 and the A2B subtypes. 8-Bromo-9-ethyladenine (3) showed higher affinity for all receptors in comparison to the parent compound 2, and the highest affinity in the series for the A2A and A2B subtypes (Ki = 0.052 and 0.84 microM, respectively). Analyzing the different substituents, a phenethoxy group in 2-position (10a) gave the highest A2A versus A2B selectivity (near 400-fold), whereas a phenethylamino group in 2- and 6-position (10b and 12b, respectively) improved the affinity at A2B receptors, compared to the parent compound 2. The presence of a hexynyl substituent in 8-position led to a compound with good affinity at the A3 receptor (4d, Ki = 0.62 microM), whereas (ar)alkynyl groups are detrimental for the potency at the A2B subtype. These differences give raise to the hope that further modifications will result in the development of currently unavailable leads with good affinity and selectivity for A2B adenosine receptors.  相似文献   

8.
We have designed a novel series of CCK-B receptor antagonists by combining key pharmacophores, an arylurea moiety of 1 and a quinazolinone ring of 3, from two known series. Our earlier studies showed that compounds with methylene linkers in our "target" produced moderate binding affinity and selectivity for CCK-B receptors, whereas its higher and lower homologues resulted in loss of affinity. Introduction of -NH- as a linker dramatically enhanced binding affinity and selectivity for CCK-B receptors, thus providing several compounds with single-digit nanomolar binding affinity and excellent selectivity. Analogous to the earlier studies of the series of quinazolinone derivatives 3, we also found 3-isopropoxyphenyl as a preferred substitution on the N-3 quinazolinone. Electron-withdrawing substitutions on the urea terminal phenyl ring enhanced the CCK-B potency. Representative compounds of this series were tested in the functional assay and showed pure antagonist profiles. Compounds 51 and 61 were orally active in the elevated rat X-maze test. These compounds were also evaluated for their pharmacokinetic profile. The absolute oral bioavailability of compound 61 was 22% in rats.  相似文献   

9.
10.
A series of new 1-aryl-4-alkylpiperazines containing a terminal benzamide fragment or a tetralin-1-yl nucleus on the alkyl chain were synthesized and tested for binding at cloned human dopamine D4 and D2 receptor subtypes. A SAFIR (structure-affinity relationship) study on this series is herein discussed. The most relevant D4 receptor affinities were displayed by N-[omega-[4-arylpiperazin-1-yl]alkyl]-methoxybenzamides (compounds 5, 16-20), their IC50 values ranging between 0.057 and 7.8 nM. Among these, N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (17) emerged since it exhibited very high affinity for dopamine D4 receptor (IC50 = 0.057 nM) with selectivity of >10 000 for the D4 versus the D2 receptor; compound 17 was also selective versus serotonin 5-HT1A and adrenergic alpha1 receptors.  相似文献   

11.
The 5-hydroxytryptamine(HT)3 receptor subtype is present in the central nervous system (CNS) in low abundance, and few selective radiolabeled antagonists with high specific activity are available to study these sites. DAIZAC [desamino-3-iodo-(S)-zacopride; (S)-5-chloro-3-iodo-2-methoxy-N-(1-azobicyclo-[2.2. 2]oct-3-yl)benzamide] is a compound with high affinity and selectivity for the 5-HT3 receptor. Scatchard analysis of specific binding to NCB-20 cell membranes gave a Bmax of 340 +/- 58 fmol/mg protein and a KD of 0.14 +/- 0.03 nM, which is in agreement with the value previously reported in rat brain (KD = 0.15 nM). Nonspecific binding of [125I]DAIZAC in NCB-20 cells was <1% of total binding at the KD for DAIZAC compared with 17% in the rat brain preparation. Unlabeled DAIZAC (10 microM) showed minimal ability to displace binding of radiolabeled ligands selected for their affinities for other CNS receptor and uptake carrier binding sites. The discrimination ratio of DAIZAC for the 5-HT3 receptor over the M1 muscarinic binding site, the non-5-HT3 site at which it was most potent, was >2800. Serotonergic antagonists at every other known CNS serotonergic binding sites (3-30 microM) were ineffective in displacing [125I]DAIZAC binding in rat brain membranes. Similarly, antagonists (3-30 microM) for other nonserotonergic receptors and uptake sites were ineffective in displacing [125I]DAIZAC binding. Autoradiographic studies showed highest specific binding in area postrema and nucleus solitarius, with intermediate levels of binding in entorhinal cortex and hippocampus. DAIZAC inhibited 5-HT3 receptor-mediated inward cation current in NCB-20 cells with an IC50 of 0.24 nM. [125I]DAIZAC is a potent and highly selective ligand for in vitro studies of the 5-HT3 receptor.  相似文献   

12.
1. Antagonists at 5-HT3 receptors have shown activity in animal models of mental illness, however, few radiolabeled 5-HT3 ligands are available for preclinical studies. MIZAC, an analogue of the selective 5-HT3 antagonist, zacopride, binds with high affinity (1.3-1.5 nM) to CNS 5-HT3 sites. The authors report here the selectivity of MIZAC for these sites in rat brain homogenates. 2. Ninety-seven percent of total specific binding of [125I]MIZAC (0.1 nM) of was displaced by bemesetron (3 microM), a selective 5-HT3 antagonist. Competition studies using ligands with known affinities for 5-HT3 sites give a high correlation with reported pKi values (r2 0.98). Bemesetron displaceable binding has a regional distribution consistent with that of the 5-HT3 receptor, i.e. highest in cortex and hippocampus, and lowest in striatum and cerebellum. 3. Potent antagonists present at concentrations sufficient to occupy 95% of other 5-HT receptor populations (1A, 1B, 1D, 2A, 2B, 2C, 5A, 5B, 6, and 7) showed minimal ability to displace [125I]MIZAC binding (3 nM). Specificity studies using radioligand binding assays selective for 5-HT4, 5-HT6, and 5-HT7 receptors, and for binding sites of other neurotransmitters indicate a high degree of selectivity of [125I]MIZAC for the 5-HT3 receptor. 4. [125I]MIZAC binds to an apparent low affinity (benzac) site having a unique pharmacology. Low affinity binding was displaceable by benztropine, but not by other muscarinic agents nor inhibitors of dopamine uptake. The regional distribution of the low affinity site differed markedly from that of the high affinity site. The apparent affinity of [125I]MIZAC for the benzac site is two orders of magnitude lower than for the 5-HT3 receptor. Given its high selectivity for 5-HT3 binding sites, [125I]MIZAC appears to be a promising ligand for labeling 5-HT3 receptors in vitro and in vivo.  相似文献   

13.
A series of 3-(2-pyridinyl)isoquinoline derivatives was synthesized as potential antagonists for the human adenosine A3 receptor by substitution of the 1-position. The compounds were obtained by various synthetic routes from 1-amino-3-(2-pyridinyl)isoquinoline. The affinity was determined in radioligand binding assays for rat brain A1 and A2A receptors and for the cloned human A3 receptor. A structure-activity relationship analysis indicated that a phenyl group when coupled by a spacer allowing conjugation on position 1 of the isoquinoline ring increased the adenosine A3 receptor affinity. In contrast, such a phenyl group directly bound to position 1 of the isoquinoline ring decreased affinity. Since the combination of a phenyl group together with a spacer raised adenosine A3 receptor affinity, various spacers were investigated. VUF8501 (N-[3-(2-pyridinyl)isoquinolin-1-yl]benzamidine (15) showed an affinity at the human adenosine A3 receptor of 740 nM. Substituent effects on the phenyl group were investigated by in vitro evaluation of a series of substituted benzamidines. Electron-donating groups at the para position of the benzamidine ring increased adenosine A3 receptor affinity. These investigations led to VUF8505 (4-methoxy-N-[3-(2-pyridinyl)isoquinolin-1-yl]benzamidine(22)), which is a moderately potent and selective ligand for the human adenosine A3 receptor with an affinity of 310 nM in our test system having negligible affinity for rat A1 and A2A receptors.  相似文献   

14.
The present study describes the binding to human platelet A2A adenosine receptors of the new potent and selective antagonist radioligand [3H]5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine ([3H]SCH 58261). Saturation experiments revealed that [3H]SCH 58261 labels a single class of recognition sites with high affinity (Kd = 0.85 nM), limited capacity (apparent Bmax = 85 fmol/mg of protein) and good specific binding (about 60%). [3H]SCH 58261 binding was not modulated by either the divalent cation Mg(+2) or guanine nucleotides. In competition experiments, a series of both adenosine agonists and antagonists inhibited [3H]SCH 58261 binding to A2A platelet receptors with rank order of potency and affinity similar to those observed in rat striatal membranes with the same radioligand. This confirms that the platelet A2A receptor is similar to that labeled in the brain striatum. Binding data were also found to be in good agreement with the results from functional studies such as A2A agonist-induced stimulation of adenylate cyclase or platelet aggregation inhibition. The present findings indicate that [3H]SCH 58261 is the first radioligand available for the characterization of the A2A receptor subtype in platelets.  相似文献   

15.
4-(Phenylethynyl)-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine) in the submicromolar range. In this study, structure-activity relationships at various positions of the dihydropyridine ring (the 3- and 5-acyl substituents, the 4-aryl substituent, and 1-methyl group) were probed synthetically. Using the combined protection of the 1-ethoxymethyl and the 5-[2-(trimethylsilyl)ethyl] ester groups, a free carboxylic acid was formed at the 5-position allowing various substitutions. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined vs radioligand binding at rat brain A1 and A2A receptors. Structure-activity analysis at adenosine receptors indicated that pyridyl, furyl, benzofuryl, and thienyl groups at the 4-position resulted in, at most, only moderate selectivity for A3 adenosine receptors. Ring substitution (e.g., 4-nitro) of the 4-phenylethylnyl group did not provide enhanced selectivity, as it did for the 4-styryl-substituted dihydropyridines. At the 3-position of the dihydropyridine ring, esters were much more selective for A3 receptors than closely related thioester, amide, and ketone derivatives. A cyclic 3-keto derivative was 5-fold more potent at A3 receptors than a related open-ring analogue. At the 5-position, a homologous series of phenylalkyl esters and a series of substituted benzyl esters were prepared and tested. (Trifluoromethyl)-, nitro-, and other benzyl esters substituted with electron-withdrawing groups were specific for A3 receptors with nanomolar Ki values and selectivity as high as 37000-fold. A functionalized congener bearing an [(aminoethyl)amino]carbonyl group was also prepared as an intermediate in the synthesis of biologically active conjugates.  相似文献   

16.
This paper summarizes the findings obtained for three different series of original compounds designed as potential H3-antagonists starting from thioperamide structure. The compounds were tested in functional and binding assays to estimate their potency, affinity and selectivity for histamine H3 receptors. Among them, many non-thiourea/isothiourea derivatives acted as selective H3 competitive antagonists and, particularly, 4(5)-[2-[4(5)-cyclohexylimidazol-2-ylthio]ethyl] imidazole (dIII) proved to be the most potent H3 blocker vs (R)-alpha-methylhistamine in electrically-stimulated ileum. This imidazole derivative, devoid of thiourea dependent toxic effects, with high affinity displaced biphasically [3H]-N alpha-methylhistamine bound to rat brain H3 sites. Thus, such compound could be proposed as the prototype molecule for the development of new non-thiourea/isothiourea H3-antagonists and as experimental tool to explore the intriguing question of H3 receptor heterogeneity.  相似文献   

17.
In the present paper, we report the synthesis and the binding profile on 5-HT1A, alpha1 and D2 receptors of a new series of 1-[omega-(4-arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2, 5-pyrrolidinediones (III) (1-4) and -3-(9H-fluoren-9-ylidene)-2, 5-pyrrolidinediones (IV) (1-4), in which the alkyl linker contains 1-4 methylenes and the aryl group is variously substituted. The results obtained are compared to those previously reported for bicyclohydantoin (I) and the related bicyclic amine (II) series. A considerable part of the tested compounds 1-4 demonstrated moderate to high affinity for 5-HT1A and alpha1 receptor binding sites but had no affinity for D2 receptors. The study of the length of the alkyl chain and the imide substructure has allowed us to suggest some differences between the 5-HT1A and the alpha1-adrenergic receptors: (i) for III and IV, affinity for the 5-HT1A receptor as a function of the length of the methylene linker decreases in the order 4 > 1 > 3 approximately 2, while for the alpha1 receptor affinity decreases in the order 3 approximately 4 > 1 approximately 2; (ii) the no-pharmacophoric steric pocket (receptor zone which does not hold the pharmacophore of the ligand but holds a nonessential fragment of the molecule) in the 5-HT1A receptor has less restriction than the corresponding pocket in the alpha1 receptor. Compounds 3a,e, which are highly selective for alpha1-adrenergic receptors, displayed antagonist activity. On the other hand, the best compromise between affinity and selectivity for 5-HT1A receptors is reached in these new series with n = 1, which is in agreement with our previous results for the bicyclohydantoin derivatives I. Two selected compounds (1d and 4e) retain agonist properties at postsynaptic 5-HT1A receptors. The same 5-HT1A agonist profile found in these compounds suggests the existence of two different no-pharmacophoric steric pockets in this receptor and a different interaction of compounds with n = 1 and n = 4. The information obtained from the interpretation of the energy minimization and 2D-NOESY experiments of compounds 1-4 together with the synthesis and binding data of new conformationally restrained analogues 4k-m is in good agreement with this working hypothesis.  相似文献   

18.
1. The putative high affinity binding site for the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethyl-amino-5'-N- ethylcarboxamidoadenosine (CGS 21680) in the rat cerebral cortex was characterized by use of a number of selective A1 and A2 adenosine receptor ligands, and compared to the characteristics of the more abundant striatal A2A receptor. 2. The binding of [3H]-CGS 21680 to cortical membranes was performed at pH 5.5, in order to increase the amount of specific binding. 3. Reduction of the pH from 7.4 to 5.5 increased the apparent affinity of the striatal binding side for both agonists and antagonists. The relative order of potencies of both groups of ligands were the same at both pH values, and were consistent with binding to the A2A receptor. There was no observable change in the Bmax, the values being 415 and 446 fmol mg-1 protein at pH 5.5 and 7.4 respectively. 4. The cortical binding site yielded a Bmax value of 117 fmol mg-1 protein. The relative order of potencies of the adenosine receptor ligands observed at this binding site were not the same as those observed in the striatum, exhibiting a profile with both A1 and A2 characteristics. 5. Further characterization of this cortical binding site in the presence of the A1 selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) revealed a more typical A2A profile. This indicated that under the conditions used there were two components of [3H]-CGS 21680 binding, approximately 20% of the A1 receptor and 80% to the A2A receptor. 6. It is concluded that in the cerebral cortex there is a CGS 21680 binding site showing the characteristic properties of the striatal A2A receptor, and no evidence was obtained for the existence of a novelA2A-like binding site.  相似文献   

19.
To improve our understanding of the functional architecture of G protein-coupled receptors, we have taken advantage of differences among mammalian species in ligand binding to search for the rat versus human selectivity determinants of the V2 vasopressin receptor and of its peptide ligands. Our data indicate that residue 2 of species-selective peptide antagonists such as d(CH2)5-[D-Ile2,Ile4, Tyr-NH29]arginine vasopressin controls their rat versus human selectivity. For species-selective agonists such as desmopressin, residues 1 and 8 modulate the binding selectivity. Among residues different between rat and human V2 receptors, those localized in the upper part of the human V2 receptor have been substituted with their rat V2 homologs. Pharmacological analysis of mutant receptors revealed that residues 202 and 304 fully control the species selectivity of the discriminating antagonists in an independent and additive manner. A third residue (position 100) is necessary to observe an equivalent phenomenon for the discriminating agonists. The substitution of these three residues does not modify the affinity of the nonselective agonists and antagonists. In conclusion, extracellular loops and the top of the transmembrane domains of V2 vasopressin receptors may provide the molecular basis for peptide ligand-binding species selectivity. Very few residues in these regions may control the binding mode of both agonists and antagonists.  相似文献   

20.
A new chemical class of potential atypical antipsychotic agents, based on the pharmacological concept of mixed dopamine D2 receptor antagonism and serotonin 5-HT1A receptor agonism, was designed by combining the structural features of the 2-(N,N-di-n-propylamino)tetralins (DPATs) and the 2-pyrrolidinylmethyl-derived substituted benzamides in a structural hybrid. Thus, a series of 35 differently substituted 2-aminotetralin-derived substituted benzamides was synthesized and the compounds were evaluated for their ability to compete for [3H]-raclopride binding to cloned human dopamine D2A and D3 receptors, and for [3H]-8-OH-DPAT binding to rat serotonin 5-HT1A receptors in vitro. The lead compound of the series, 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (12a), displayed high affinities for the dopamine D2A receptor (Ki = 3.2 nM), the dopamine D3 receptor (Ki = 0.58 nM) as well as the serotonin 5-HT1A receptor (Ki = 0.82 nM). The structure-affinity relationships of the series suggest that the 2-aminotetralin moieties of the compounds occupy the same binding sites as the DPATs in all three receptor subtypes. The benzamidoethyl side chain enhances the affinities of the compounds for all three receptor subtypes, presumably by occupying an accessory binding site. For the dopamine D2 and D3 receptors, this accessory binding site may be identical to the binding site of the 2-pyrrolidinylmethyl-derived substituted benzamides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号